При попутном ветре дующем вдоль трассы, время полета самолета из города а в город в равно ∆t=1ч 20мин, а обратно при том же ветре ∆t=2ч. сколько времени будет продолжаться полет между этими в безветренную погоду? во всех случаях скорость самолета относительно воздуха одинакова.
Объяснение:
Запишем уравнения равноускоренного движения тела в общем виде:x(t) = x0 +V0x*t+ax*t^2/2y(t) = y0 + V0y*t+ay*t^2/2Подставим условия нашей задачи:Начало координат поставим в точку бросания тела => x0=y0=0сопротивления воздуха нет => ax=0, ay = -g(в моих обозначениях это x- и y- составляющие ускорения)Vx=V0*cos45 ; Vy = V0*sin45 (в моих обозначениях это x- и y- составляющие скорости и начальная скорость)подставив в общие уравнения, получим.x(t) = V0*cos45*ty(t) = V0*sin45*t - g*t^2/2Теперь найдём дальность полёта из условия y(t1)=0, t1- время полёта до падения.0=V0*sin45*t1 - g*t1^2/2; первое решение t1=0, второе - t1 =2*V0*sin45/g ~ 2.828 c (два корня из двух).Дальность полёта есть x(t1) = V0*cos45*2*V0*sin45/g = 40 мВремя полёта есть t1/2 в силу симметрии траектории = (корень из 2 секунд)