1) При движении с горы на санки действует сталкивающая сила m*g*sin(30)=m*g/2=4,905*m и cила трения 0,1*m*g*cos(30)=0,05*m*g*sqrt(3)=0,85*m. Длина горы равна 5/sin(30)=10 м. При движении с горы движение санок подчиняется уравнению 4,905*m-0,85*m=m* dv/dt, где v- скорость движения саней. Отсюда 4,055*m=m*dv/dt или dv/dt=4,055. Решая это уравнение, находим v=4,055*t. Т.к. v=ds/dt, где s- расстояние от верха горы, то s=4,055*t*t/2. При s=10 м t=sqrt(20/4,055)= 2,22c - время спуска саней с горы. В конце спуска v=v0=4,055*2,22=9 м/с 2) движение по ровному участку есть движение под действием силы трения -0,85*m c начальной скоростью v0=9 м/с. По 2закону Ньютона, m*dv/dt=-0,85*m, Решая уравнение, находим v=v0-0,85*t=9-0,85*t. Приравнивая это выражение нулю, находим время до остановки саней t=9/0,85=10,59с. Но т.к. v=ds/dt, где s-пройденный по равнине путь, то s=v0*t-0,425*t*t = 9*t-0,425*t*t, что при t=10,59c даёт s= 95,31-47,66=47,65м
ответ:Тангенциальное ускорение описывает изменение скорости по времени, что является второй производной от уравнения движения:
At = s'' = (2t^2 + t)'' = (4t + 1)' = 4 м/с^2
Нормальное ускорение - это такая составляющая скорости, которая направлена к центру кривизны траектории r = 20 см = 0.2 м и определяется как a = v^2 / r
Уравнение скорости - это первая производная от уравнения движения, т.е. (4t + 1), где t = 10 c
An = v^2 / r = (4t + 1)^2 / r = (4*10 c + 1)^2 / 0.2 = 8405 м/с^2
Вектора тангенциального и нормального ускорений перпендикулярны, значит полное ускорение по теореме Пифагора:
При столь малом тангенциальном и столь большом нормальном, вектор полного ускорения стремиться к нормальному. Вектор скорости совпадает по направлению с тангенциальным, а значит угол между вектором скорости и вектором полного ускорения стремиться к 90° .
2) движение по ровному участку есть движение под действием силы трения -0,85*m c начальной скоростью v0=9 м/с. По 2закону Ньютона, m*dv/dt=-0,85*m, Решая уравнение, находим v=v0-0,85*t=9-0,85*t. Приравнивая это выражение нулю, находим время до остановки саней t=9/0,85=10,59с. Но т.к. v=ds/dt, где s-пройденный по равнине путь, то s=v0*t-0,425*t*t = 9*t-0,425*t*t, что при t=10,59c даёт s= 95,31-47,66=47,65м
ответ:Тангенциальное ускорение описывает изменение скорости по времени, что является второй производной от уравнения движения:
At = s'' = (2t^2 + t)'' = (4t + 1)' = 4 м/с^2
Нормальное ускорение - это такая составляющая скорости, которая направлена к центру кривизны траектории r = 20 см = 0.2 м и определяется как a = v^2 / r
Уравнение скорости - это первая производная от уравнения движения, т.е. (4t + 1), где t = 10 c
An = v^2 / r = (4t + 1)^2 / r = (4*10 c + 1)^2 / 0.2 = 8405 м/с^2
Вектора тангенциального и нормального ускорений перпендикулярны, значит полное ускорение по теореме Пифагора:
A = √(At^2 + An^2) = √((4 м/с^2)^2 + (8405 м/с^2)^2) = 8405.001 м/с^2
При столь малом тангенциальном и столь большом нормальном, вектор полного ускорения стремиться к нормальному. Вектор скорости совпадает по направлению с тангенциальным, а значит угол между вектором скорости и вектором полного ускорения стремиться к 90° .