Проект на тему: 2: Визначення середньої швидкості нерівномірого руху. Порівняння пвидкостей рухів тварин, техніки Обертальний рух в природі основа відліку часу. Коливальні процеси в технщі та живій природі ТЬ
Рассмотрим простой маятник — шарик, подвешенный на длинной прочной нити. Такой маятник называется физическим. Если размеры шарика много меньше длины нити, то этими размерами можно пренебречь и рассматривать шарик как материальную точку. Растяжением нити также можно пренебречь, так как оно очень мало. Если масса нити во много раз меньше массы шарика, то массой нити также можно пренебречь. В этом случае мы получаем модель маятника, которая называется математическим маятником. Определение Математическим маятником называется материальная точка массой , подвешенная на невесомой нерастяжимой нити длиной в поле силы тяжести (или других сил). Галилео Галилей экспериментально установил, что период колебаний математического маятника в поле силы тяжести не зависит от его массы и амплитуды колебаний (угла начального отклонения). Он установил также, что период колебаний прямо пропорционален . Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле Гюйгенса:
При углах отклонения математического маятника погрешность расчета периода по формуле Гюйгенса не превышает . В общем случае, когда маятник находится в однородных полях нескольких сил, то для определения периода колебаний следует ввести «эффективное ускорение» , характеризующее результирующее действие этих полей, и период колебаний маятника будет определяться по формуле
t -?
Вода получит количество теплоты Q1=m1c1(t-t1);
Калориметр получит количество теплоты Q2=m2c2(t-t1);
Гиря отдаст количество теплоты Q3=m3c3(t2-t).
Уравнение теплового баланса: Q1+Q2=Q3, m1c1(t-t1)+m2c2(t-t1)=m3c3(t2-t). Решим полученное уравнение:
m1c1t-m1c1t1+m2c2t-m2c2t1=m3c3t2-m3c3t.
m1c1t+m2c2t+m3c3t=m3c3t2+ m1c1t1 + m2c2t1;
t(m1c1+m2c2+m3c3)=m3c3t2+ m1c1t1 + m2c2t1;
t=(m3c3t2+ t1(m1c1 + m2c2))/(m1c1+m2c2+m3c3);
t=(0,5*460*100+ 12*(0,15*4200+0,2*400))/(0,15*4200+0,2*400+0,5*460) = (23000+8520)/940= 33,5°≈34°.
Определение
Математическим маятником называется материальная точка массой
, подвешенная на невесомой нерастяжимой нити длиной
в поле силы тяжести (или других сил).
Галилео Галилей экспериментально установил, что период колебаний математического маятника в поле силы тяжести не зависит от его массы и амплитуды колебаний (угла начального отклонения). Он установил также, что период колебаний прямо пропорционален
.
Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле Гюйгенса:
При углах отклонения математического маятника
погрешность расчета периода по формуле Гюйгенса не превышает
.
В общем случае, когда маятник находится в однородных полях нескольких сил, то для определения периода колебаний следует ввести «эффективное ускорение»
, характеризующее результирующее действие этих полей, и период колебаний маятника будет определяться по формуле