Мне так представляется, что ускорение мела (замедление, если угодно, отрицательное ускорение) в данной задаче постоянно.
Почему так? Сила трения Fтр = N * mu = m * g * mu Ускорение (как учил старина Ньютон) а = F / m. В направлении движения, на мел действует единственная сила - трения, других я из условия не усматриваю.
Следовательно, ускорение а = m * g * mu / m = g * mu = 10 * 0,3 = 3 м/с2
Обычное тело в таких условиях ехало бы путь Х = v^2 / (2a) = 121 / 6 = 20,1666 м, но эх, какая незадача - мел истирается. Ок, так сколько же метров сможет вообще проехать мел до полной аннигиляции при условии заданных цифр?
х = 8 г / 0,5 г/м = 16 м. Жаль, недолог его путь. Но зато мы уже более близки к ответу.
Чисто технически мне проще сначала найти скорость u мела в момент его исчезновения. х = ( v^2 - u^2 ) / (2a) 16 = (121 - u^2) / 6 u^2 = 25 u = 5 м/с - при этой скорости от мела, как от чеширского кота, остаётся лишь наглая глумливая ухмылка, и больше ничего.
Отсюда поищем время от начала движения до сего печального момента: t = (v-u) / a = (11-5) / 3 = 2 c
Ну, может я ошибаюсь, но мне так кажется. Если, конечно, мел не украдут раньше в пути его следования.
1) Абсолютная звездная величина цефеид определяется по формуле: M = - 1,25 - 3,001*lg5 = - 3,35^m с другой стороны M = m + 5 - 5*lg(r)? r - расстояние до цефеиды в парсеках (пк) - 3,35 = 15 + 5 - 5*lg(r) lg(r) = (15 + 5 + 3,35) / 5 = 23,35 / = 4,67 r = 10^4,67 = 46774 пк
2) P = 0,12/√ρ = P - период пульсации цефеиды (в сутках) ρ - средняя плотность цефеиды (в единицах средней плотности Солнца) = 1408 кг/м³ ρ = 0,0144 / Р² = 0,0144/20² = 3,6*10⁵*1408 кг/м³ ≈ 5,07*10⁻² кг/м³
3) Видимая звездная величина Солнца m = - 26,8^m r = 1 а. е. = 1/206265 пк M = m + 5 - 5*lg(r) = - 26,8 + 5 - 5*lg(1/206265) = - 26,8 + 5 + 26,6 = = 4,8^m
4) υ = S / t = 150000000 км / (3*24*3600 с ) = 579 км/с
Мне так представляется, что ускорение мела (замедление, если угодно, отрицательное ускорение) в данной задаче постоянно.
Почему так?
Сила трения Fтр = N * mu = m * g * mu
Ускорение (как учил старина Ньютон) а = F / m.
В направлении движения, на мел действует единственная сила - трения, других я из условия не усматриваю.
Следовательно, ускорение
а = m * g * mu / m = g * mu = 10 * 0,3 = 3 м/с2
Обычное тело в таких условиях ехало бы путь
Х = v^2 / (2a) = 121 / 6 = 20,1666 м, но эх, какая незадача - мел истирается. Ок, так сколько же метров сможет вообще проехать мел до полной аннигиляции при условии заданных цифр?
х = 8 г / 0,5 г/м = 16 м. Жаль, недолог его путь. Но зато мы уже более близки к ответу.
Чисто технически мне проще сначала найти скорость u мела в момент его исчезновения.
х = ( v^2 - u^2 ) / (2a)
16 = (121 - u^2) / 6
u^2 = 25
u = 5 м/с - при этой скорости от мела, как от чеширского кота, остаётся лишь наглая глумливая ухмылка, и больше ничего.
Отсюда поищем время от начала движения до сего печального момента:
t = (v-u) / a = (11-5) / 3 = 2 c
Ну, может я ошибаюсь, но мне так кажется. Если, конечно, мел не украдут раньше в пути его следования.
M = - 1,25 - 3,001*lg5 = - 3,35^m
с другой стороны
M = m + 5 - 5*lg(r)? r - расстояние до цефеиды в парсеках (пк)
- 3,35 = 15 + 5 - 5*lg(r)
lg(r) = (15 + 5 + 3,35) / 5 = 23,35 / = 4,67
r = 10^4,67 = 46774 пк
2) P = 0,12/√ρ =
P - период пульсации цефеиды (в сутках)
ρ - средняя плотность цефеиды (в единицах средней плотности Солнца) = 1408 кг/м³
ρ = 0,0144 / Р² = 0,0144/20² = 3,6*10⁵*1408 кг/м³ ≈ 5,07*10⁻² кг/м³
3) Видимая звездная величина Солнца m = - 26,8^m
r = 1 а. е. = 1/206265 пк
M = m + 5 - 5*lg(r) = - 26,8 + 5 - 5*lg(1/206265) = - 26,8 + 5 + 26,6 =
= 4,8^m
4) υ = S / t = 150000000 км / (3*24*3600 с ) = 579 км/с