Радиус некоторой планеты в 4 раза меньше радиуса земли, а мас- са - 80 раз меньше массы земли. определите ускорение сво- бодного падения на этой планете.
g=GM/R^2, где М - масса планеты, R - ее радиус, G - гравитационная постоянная g1/g=M1*R^2/(M*R1^2) M1,R1 - не Земля :) g1=g*(M1/M)*(R/R1)^2=g*(1/80)*(1/(1/4))^2=g*16/80=g/5=2 м/с^2
g=GM/R^2, где М - масса планеты, R - ее радиус, G - гравитационная постоянная g1/g=M1*R^2/(M*R1^2) M1,R1 - не Земля :) g1=g*(M1/M)*(R/R1)^2=g*(1/80)*(1/(1/4))^2=g*16/80=g/5=2 м/с^2
Итак, наше уравнение силы тяжести выглядит следующим образом:
Пускай тело находится в покое, тогда, сократив m, получаем:
M' - масса планеты, R' - её радиус, тогда:
Теперь выход наших уравнений. Одно для Земли, второе - для левой там планеты:
И по логике вещей разделим первое уравнение на второе:
The end