Рассчитать энергетический выход ядерной реакции 7 3 Li+1 1 h--->4 2 he+4 2 he En=104,653 E he=28,2937 E o=131,754 Рассчитать ДВУМЯ По дефекту массы ядерной реакции 2) По разности суммарной энергии связи
новости науки обнаружен новый феномен в теоретической элементарных частиц 01.04.2006 • игорь иванов • наука и общество, , первое апреля •17 комментариев  поскольку ни одной фотографии гордона чалмерса нам найти не удалось, мы публикуем изображение его тезки — преподавателя культуры доктора гордона чалмерса из западного вашингтонского университета. не исключено, что оба чалмерса чем-то похожи в теоретической элементарных частиц наступил переломный момент: появилась новая парадигма, которая дает ответы на нерешенные вопросы и на порядки лучше описывает реальность, чем ортодоксальная теория. не секрет, что в теоретической элементарных частиц (фэч) назревает кризис.стандартная модель — основа фэч — является неполной теорией, и удовлетвориться лишь ею одной теоретики не могут. долгое время считалось, что ответы на все вопросы будут получены в рамках теории суперструн, но открытия последних лет вдребезги разбилиэти надежды. многие ученые потеряли веру в то, что современная ведет их правильной дорогой, и пытаются применять уже метанаучные аргументы, основанные наантропном принципе. в такой ситуации настоящим шагом вперед может быть лишь коренной пересмотр научной парадигмы и выработка совершенно нового подхода к теоретической . например, пять лет назад ученый мир был потрясен совершенно новым подходом к , предложенным стивеном вольфрамом (см. подробнее заметку я наткнулся на трещину, проходящую через всю современную однако тогда вера в теорию суперструн была велика, и новый подход не получил развития.
из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. сила, которая действует на электрический заряд q, движущийся в магнитном поле со скоростью v, называется силой лоренца и задается выражением
(1)
где в — индукция магнитного поля, в котором заряд движется.
чтобы определить направление силы лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор в, а четыре вытянутых пальца направить вдоль вектора v (для q> 0 направления i и v , для q< 0 — противоположны), то отогнутый большой палец покажет направление силы, которая действует на положительный заряд. на рис. 1 продемонстрирована взаимная ориентация векторов v, в (поле имеет направление на нас, на рисунке показано точками) и f для положительного заряда. если заряд отрицательный, то сила действует в противоположном направлении. модуль силы лоренца, как уже известно, равен
где α — угол между v и в.
подчеркнем еще раз, что магнитное поле не оказывает действия на покоящийся электрический заряд. этим магнитное поле существенно отличается от электрического. магнитное поле действует только на движущиеся в нем заряды.
зная действие силы лоренца на заряд можно найти модуль и направление вектора в, и формула для силы лоренца может быть применена для нахождения вектора магнитной индукции в.
поскольку сила лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. значит, сила лоренца работы не совершает. другими словами, постоянное магнитное поле не совершает работы над движущейся в этом поле заряженной частицей и, следовательно, кинетическая энергия этой частицы при движении в магнитном поле не изменяется.
в случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией в действует еще и электрическое поле с напряженностью е, то суммарная результирующая сила f, которая приложена приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы лоренца:
это выражение носит название формулы лоренца. скорость v в этой формуле есть скорость заряда относительно магнитного поля.
сила лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамикедействует на точечную заряженную частицу. иногда силой лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. в международной системе единиц (си)выражается как: f=q(e+(v умножыть в))
названа в честь голландского хендрика лоренца, который вывел выражение для этой силы в 1892 году. за три года до лоренца правильное выражение было найдено о. хевисайдом.
макроскопическим проявлением силы лоренца является сила ампера.
для силы лоренца, так же как и для сил инерции, третий закон ньютона не выполняется. лишь переформулировав этот закон ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил лоренца
из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. сила, которая действует на электрический заряд q, движущийся в магнитном поле со скоростью v, называется силой лоренца и задается выражением
(1)
где в — индукция магнитного поля, в котором заряд движется.
чтобы определить направление силы лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор в, а четыре вытянутых пальца направить вдоль вектора v (для q> 0 направления i и v , для q< 0 — противоположны), то отогнутый большой палец покажет направление силы, которая действует на положительный заряд. на рис. 1 продемонстрирована взаимная ориентация векторов v, в (поле имеет направление на нас, на рисунке показано точками) и f для положительного заряда. если заряд отрицательный, то сила действует в противоположном направлении. модуль силы лоренца, как уже известно, равен
где α — угол между v и в.
подчеркнем еще раз, что магнитное поле не оказывает действия на покоящийся электрический заряд. этим магнитное поле существенно отличается от электрического. магнитное поле действует только на движущиеся в нем заряды.
зная действие силы лоренца на заряд можно найти модуль и направление вектора в, и формула для силы лоренца может быть применена для нахождения вектора магнитной индукции в.
поскольку сила лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. значит, сила лоренца работы не совершает. другими словами, постоянное магнитное поле не совершает работы над движущейся в этом поле заряженной частицей и, следовательно, кинетическая энергия этой частицы при движении в магнитном поле не изменяется.
в случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией в действует еще и электрическое поле с напряженностью е, то суммарная результирующая сила f, которая приложена приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы лоренца:
это выражение носит название формулы лоренца. скорость v в этой формуле есть скорость заряда относительно магнитного поля.
сила лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамикедействует на точечную заряженную частицу. иногда силой лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. в международной системе единиц (си)выражается как: f=q(e+(v умножыть в))
названа в честь голландского хендрика лоренца, который вывел выражение для этой силы в 1892 году. за три года до лоренца правильное выражение было найдено о. хевисайдом.
макроскопическим проявлением силы лоренца является сила ампера.
для силы лоренца, так же как и для сил инерции, третий закон ньютона не выполняется. лишь переформулировав этот закон ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил лоренца