Рассчитать расстояние до точки горизонта, которое возможно со смотровой площадки на высоте 10 метров от поверхности Земли. Ростом наблюдателя пренебречь. Считать радиус Земли равный 6371,032 км. ответ округлить до целых и выразить в метрах
Так как земля изогнута, наблюдателю, находящемуся, например, в море, представляется, что он находится в центре круга, по краям которого небо как бы смыкается с морской поверхностью. Эта окружность и называется видимым горизонтом наблюдателя. На картинке слева видимый горизонт обозначен пунктирной линией. То есть для наблюдателя, находящегося в точке А на высоте h от земли, видимый горизонт будет образован всеми точками касания лучей зрения земной поверхности (угол BCO равен 90 градусов).
Говоря о видимом горизонте чаще всего имеют в виду длину d отрезка BC. Длину d легко вывести из теоремы Пифагора.
d=\sqrt{(R+h)^2-R^2}=\sqrt{h(2R+h)}
где R - радиус Земли, который обычно принимают за 6378 километров.
В реальной жизни на стороне человека выступает атмосфера. Она, благодаря явлению рефракции, то есть отражения лучей в верхних слоях атмосферы, расширяет его горизонты примерно на 6% :)
Формула, таким образом, принимает вид
d=1.06*\sqrt{h(2R+h)}
В принципе, везде (по крайней мере, насколько я находил в Интернете) для расчетов используют упрощенную формулу, из которой исключен радиус Земли. Она, кстати, вполне выводится из верхней.
d=2.08*\sqrt{h}, для результата в морских милях или
d=3.85*\sqrt{h}, для результата в километрахбъяснение:
О
Видимый горизонт
Так как земля изогнута, наблюдателю, находящемуся, например, в море, представляется, что он находится в центре круга, по краям которого небо как бы смыкается с морской поверхностью. Эта окружность и называется видимым горизонтом наблюдателя. На картинке слева видимый горизонт обозначен пунктирной линией. То есть для наблюдателя, находящегося в точке А на высоте h от земли, видимый горизонт будет образован всеми точками касания лучей зрения земной поверхности (угол BCO равен 90 градусов).
Говоря о видимом горизонте чаще всего имеют в виду длину d отрезка BC. Длину d легко вывести из теоремы Пифагора.
d=\sqrt{(R+h)^2-R^2}=\sqrt{h(2R+h)}
где R - радиус Земли, который обычно принимают за 6378 километров.
В реальной жизни на стороне человека выступает атмосфера. Она, благодаря явлению рефракции, то есть отражения лучей в верхних слоях атмосферы, расширяет его горизонты примерно на 6% :)
Формула, таким образом, принимает вид
d=1.06*\sqrt{h(2R+h)}
В принципе, везде (по крайней мере, насколько я находил в Интернете) для расчетов используют упрощенную формулу, из которой исключен радиус Земли. Она, кстати, вполне выводится из верхней.
d=2.08*\sqrt{h}, для результата в морских милях или
d=3.85*\sqrt{h}, для результата в километрахбъяснение: