Электрический то-упорядоченное движение заряженных частиц.сила тока-физ.величена,кот. характеризует эл. ток и определяется отношением эл.заряда через поперечное сечение проводника,ко времени его прохождения.I=q:t напряжение-физ.величина,кот.определяется отношением работы эл.поля на данном участке цепи к эл.заряду по этому участку.U=A:q Мощность-физ. величина,характеризующая эл.тока выполнять определенную работу за единицу времени P=A:t сопротивление проводника-физ.величина,численно равная сопротивлению изготовленно из данного в-ва проводника длиной 1 м и площадью сечения 1 м(квадратный)R=p*l:S Ом закон Ома:сила тока на участке цепи прямо пропорциональна напряжению на данном участке и обратно пропорциональна сопротивлению этого участка R=U:I;I=U:R;U=I:R; послед.соед.проводников-при ... потребителей их соединяют поочередно один за другим без разветвлений проводов I=I1=I2;U=U1+U2;R=R1+R2; парал.соед.проводников-при...потребителей выводы каждого из них присоединяют к общей для всех паре зажимов: U=U1=U2;I=I1+I2;1:R=1:R1+1:R2; закон Джоуля Ленца-кол-во теплоты,кот. передается окружающей среде,равно работе эл.тока: Q=U(в квадрате)*t:R
"закон сохранения электрического заряда гласит, что сумма зарядов электрически замкнутой системы сохраняется. закон сохранения заряда выполняется абсолютно точно. на данный момент его происхождение объясняют следствием принципа калибровочной инвариантности [1][2]. требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. в изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. однако, такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. то есть был бы отрезок времени, в течение которого заряд не сохраняется. требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме." права