m = 0.05 кг - масса камушка r = 0.55 м - радиус вращения k = 0.7 - коэффициент трения t = 0.1 с - время удара "апстену" g = 10 м/с² - ускорение силы тяжести камушек слетает с диска, когда ma = mgk a = v²/r - центростремительное ускорение камушка v - линейная скорость камушка v²/r = gk следовательно v = √(gkr) при ударе об стену без потери энергии изменение импульса равно Δp = 2mv = 2m√(gkr) Импульс силы удара камушка об стену равен изменению импульса камушка Ft = Δp = 2m√(gkr) откуда сила равна F = 2m√(gkr)/t = 2·0.05√(10·0.7·0.55)/0.1 = 2 H
Горизонтальное расстояние L, горизонтальная составляющая скорости v₀Cosα и время полёта камня t связаны следующим соотношением: tv₀Cosα = L откуда время полёта t = L/v₀Cosα
С другой стороны, время полёта складывается из времени, в течение которого камень слетал на максимальную высоту и вернулся обратно, на высоту обрыва: t₁ = 2v₀Sinα/g и времени t₂, которое затратил камень, падая с высоты h обрыва с вертикальной составляющей, равной v₀Sinα.
Время t₂ можно рассчитать, если мы определим вертикальную составляющую скорости v, с которой камень упал в овраг, поскольку t₂ = (v - v₀Sinα)/g.
Полная механическая энергия E = mv²/2 есть величина постоянная, поэтому можно написать mv²/2 = mgh + mv₀²Sin²α/2 откуда вертикальная составляющая скорости, с которой камень завершил полёт равна: v = √(2gh + v₀²Sin²α) и в результате время t₂ = (√(2gh + v₀²Sin²α) - v₀Sinα)/g
Таким образом, мы можем выразить время полёта через вертикальную составляющую начальной скорости броска камня: t = t₁ + t₂ = 2v₀Sinα/g + (√(2gh + v₀²Sin²α) - v₀Sinα)/g; t = v₀Sinα/g + √(2h/g + v₀²Sin²α/g²)
Это даёт нам возможность написать уравнение для определения искомой начальной скорости v₀:
Поскольку решение перегружено алгебраическими преобразованиями, проведём на всякий случай проверку. t = v₀Sinα/g + √(2h/g + v₀²Sin²α/g²) = 6.03·0.5/10 + √(2·100/10 + 6.03²0.5²/100) = 4.78 c
Тогда L = tv₀Cosα = 4.78·6.03·0.866 = 25 м - по-видимому, в вычислениях я не проврался.
Итак, ответ: камень бросили с начальной скоростью 6,03 м/с
r = 0.55 м - радиус вращения
k = 0.7 - коэффициент трения
t = 0.1 с - время удара "апстену"
g = 10 м/с² - ускорение силы тяжести
камушек слетает с диска, когда
ma = mgk
a = v²/r - центростремительное ускорение камушка
v - линейная скорость камушка
v²/r = gk
следовательно
v = √(gkr)
при ударе об стену без потери энергии изменение импульса равно
Δp = 2mv = 2m√(gkr)
Импульс силы удара камушка об стену равен изменению импульса камушка
Ft = Δp = 2m√(gkr)
откуда сила равна
F = 2m√(gkr)/t = 2·0.05√(10·0.7·0.55)/0.1 = 2 H
tv₀Cosα = L
откуда время полёта
t = L/v₀Cosα
С другой стороны, время полёта складывается из времени, в течение которого камень слетал на максимальную высоту и вернулся обратно, на высоту обрыва:
t₁ = 2v₀Sinα/g
и времени t₂, которое затратил камень, падая с высоты h обрыва с вертикальной составляющей, равной v₀Sinα.
Время t₂ можно рассчитать, если мы определим вертикальную составляющую скорости v, с которой камень упал в овраг, поскольку
t₂ = (v - v₀Sinα)/g.
Полная механическая энергия E = mv²/2 есть величина постоянная, поэтому можно написать
mv²/2 = mgh + mv₀²Sin²α/2
откуда вертикальная составляющая скорости, с которой камень завершил полёт равна:
v = √(2gh + v₀²Sin²α) и в результате время
t₂ = (√(2gh + v₀²Sin²α) - v₀Sinα)/g
Таким образом, мы можем выразить время полёта через вертикальную составляющую начальной скорости броска камня:
t = t₁ + t₂ = 2v₀Sinα/g + (√(2gh + v₀²Sin²α) - v₀Sinα)/g;
t = v₀Sinα/g + √(2h/g + v₀²Sin²α/g²)
Это даёт нам возможность написать уравнение для определения искомой начальной скорости v₀:
L/v₀Cosα = v₀Sinα/g + √(2h/g + v₀²Sin²α/g²)
Решаем его:
L = v₀²SinαCosα/g + √(2hv₀²Cosα²/g + v₀⁴Sin²αCosα²/g²)
L - v₀²SinαCosα/g = √(2hv₀²Cosα²/g + v₀⁴Sin²αCosα²/g²)
L² - 2Lv₀²SinαCosα/g + v₀⁴Sin²αCosα²/g² = 2hv₀²Cosα²/g + v₀⁴Sin²αCosα²/g²
L² - 2Lv₀²SinαCosα/g = 2hv₀²Cosα²/g
v₀² = L²g/(2hCosα² + 2LSinαCosα)
и окончательно
v₀ = L√(g/(2(hCosα² + LSinαCosα))
v₀ = 25√(10/(2(100·0.866² + 25·0.5·0.866)) = 6.03 м/с
Поскольку решение перегружено алгебраическими преобразованиями, проведём на всякий случай проверку.
t = v₀Sinα/g + √(2h/g + v₀²Sin²α/g²) = 6.03·0.5/10 + √(2·100/10 + 6.03²0.5²/100) = 4.78 c
Тогда
L = tv₀Cosα = 4.78·6.03·0.866 = 25 м -
по-видимому, в вычислениях я не проврался.
Итак, ответ: камень бросили с начальной скоростью 6,03 м/с