Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
Запишем формулу кинетической энергии в малекулярной физике . Нам неизвестна температура, её мы выражаем из уравнения Менделеева-Клайперона ⇒ из данной формулы выражаем температуру ⇒ подставив данную формулу в формулу кинетической энергии
R - универсальная газовая постоянная = 8,31 Дж/моль*К.
Среднюю скорость катера можно сосчитать по формуле:
\[{\upsilon _{ср}} = \frac{{{S_1} + {S_2}}}{{{t_1} + {t_2}}}\]
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
\[\left\{ \begin{gathered}
{t_1} = \frac{S}{{2{\upsilon _1}}} = \frac{S}{{4{\upsilon _2}}} \hfill \\
{t_2} = \frac{S}{{2{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Подставим выражения для времен \(t_1\) и \(t_2\) в формулу средней скорости.
\[{\upsilon _{ср}} = \frac{S}{{\frac{S}{{4{\upsilon _2}}} + \frac{S}{{2{\upsilon _2 = \frac{S}{{\frac{{3S}}{{4{\upsilon _2 = \frac{{S \cdot 4{\upsilon _2}}}{{3S}} = \frac{{4{\upsilon _2}}}{3}\]
Значит необходимая нам скорость \(\upsilon_2\) определяется по такой формуле.
Запишем формулу кинетической энергии в малекулярной физике . Нам неизвестна температура, её мы выражаем из уравнения Менделеева-Клайперона ⇒ из данной формулы выражаем температуру ⇒ подставив данную формулу в формулу кинетической энергии
R - универсальная газовая постоянная = 8,31 Дж/моль*К.
k - постоянная Больцмана = 1,38*10⁻²³ Дж/К.
V - объём = 1 м³.
p - давление = 1,5*10⁵ Па.
N - число малекул = 2*10²⁵.
Na - число авагадро = 6*10²³ моль₋₁
Подставляем численные данные и вычисляем ⇒
Джоуль.
ответ: Дж.