Жёсткость пружины k начальная деформация h массы брусков m1, m2 скорость первого бруска в момент когда отпускают второй m1 v1^2 / 2 = k h^2 / 2 v1 = h корень (k / m1) ведём отсчёт времени и координат брусков от момента и положений, когда отпускают второй d^2 x1 / dt^2 = - k/m1 (x1-x2), d^2 x2 / dt^2 = - k/m2 (x2-x1) dx1 / dt = v1 при t = 0, dx2 / dt = 0 при t = 0 вычитая из первого второе получим d^2 (x1-x2) / dt^2 = (-k/m1 - k/m2) (x1-x2) откуда ясно, что величина (x1-x2) будет испытывать гармонические колебания с частотой омега = корень (k/m1 + k/m2) в начальный момент d(x1-x2) / dt = v1, x1-x2 = 0 при нулевой координате скорость максимальна амплитуда равна максимальная скорость делить на частоту A = v1 / омега = h корень (k / m1) / корень (k/m1 + k/m2) = = h корень (1/m1) / корень (1/m1 + 1/m2) = h корень (m2/(m1+m2)) амплитуда величины x1-x2 это и есть максимальная деформация пружины 10 * корень (16/25) = 8
Итак, у нас есть две гири и одна ниже другой на два метра. Их отпускают и через две секунды они будут на одной высоте. Нужно найти частность их масс. Во-первых, за две секунды обе гири проедут 1 м. Во-вторых, их суммарная сила которая тянет их равна Fсум = Fб - Fм (m1+m2)a = m1g - m2g
начальная деформация h
массы брусков m1, m2
скорость первого бруска в момент когда отпускают второй
m1 v1^2 / 2 = k h^2 / 2
v1 = h корень (k / m1)
ведём отсчёт времени и координат брусков от момента и положений, когда отпускают второй
d^2 x1 / dt^2 = - k/m1 (x1-x2), d^2 x2 / dt^2 = - k/m2 (x2-x1)
dx1 / dt = v1 при t = 0, dx2 / dt = 0 при t = 0
вычитая из первого второе получим
d^2 (x1-x2) / dt^2 = (-k/m1 - k/m2) (x1-x2)
откуда ясно, что величина (x1-x2) будет испытывать гармонические колебания с частотой омега = корень (k/m1 + k/m2)
в начальный момент d(x1-x2) / dt = v1, x1-x2 = 0
при нулевой координате скорость максимальна
амплитуда равна максимальная скорость делить на частоту
A = v1 / омега = h корень (k / m1) / корень (k/m1 + k/m2) =
= h корень (1/m1) / корень (1/m1 + 1/m2) = h корень (m2/(m1+m2))
амплитуда величины x1-x2 это и есть максимальная деформация пружины
10 * корень (16/25) = 8
Во-первых, за две секунды обе гири проедут 1 м.
Во-вторых, их суммарная сила которая тянет их равна
Fсум = Fб - Fм
(m1+m2)a = m1g - m2g
Найдем ускорение
S=Uo*t + 1/2 *a*t^2 Uo=0
S=1/2 * a * t^2
a=2S/t^2 = 2*1м/2^2 = 2/4 = 0.5м/с^2
m1a+m2a = m1g - m2g
m2(a+g)=m1(g-a)
m1/m2 = (a+g)/(g-a) = 10.5 / 9.5 = 1.1
ответ: Масса тяжелой гири в 1,1 раз больше массы легкой
Вопросы в комменты, ставим лучший