ответ:
груз движется по окружности радиуса r=h*tg(alpha) с ускорением а
закон ньютона в проекции на горизонтальную ось
ma=m*w^2*r=m*(2*pi/t)^2*r=n*sin(alpha)
закон ньютона в проекции на венртикальную ось
m*0=mg-n*cos(alpha)
m*(2*pi/t)^2*r=n*sin(alpha)
mg=n*cos(alpha)
r=h*tg(alpha)
m*(2*pi/t)^2*(h*tg(alpha))=n*sin(alpha) - разделим уравнение на тангенс
m*(2*pi/t)^2*h=n*cos(alpha)
m*(2*pi/t)^2*h=mg
(2*pi/t)^2*h=g
(2*pi/t)=корень(g/h)
t=2*pi/корень(g/h)=2*pi*корень(h/g)=2*pi*корень(1,5/10)= 2,433467206 сек ~
2,4 сек
ответ:
груз движется по окружности радиуса r=h*tg(alpha) с ускорением а
закон ньютона в проекции на горизонтальную ось
ma=m*w^2*r=m*(2*pi/t)^2*r=n*sin(alpha)
закон ньютона в проекции на венртикальную ось
m*0=mg-n*cos(alpha)
m*(2*pi/t)^2*r=n*sin(alpha)
mg=n*cos(alpha)
r=h*tg(alpha)
m*(2*pi/t)^2*(h*tg(alpha))=n*sin(alpha) - разделим уравнение на тангенс
mg=n*cos(alpha)
m*(2*pi/t)^2*h=n*cos(alpha)
mg=n*cos(alpha)
m*(2*pi/t)^2*h=mg
(2*pi/t)^2*h=g
(2*pi/t)=корень(g/h)
t=2*pi/корень(g/h)=2*pi*корень(h/g)=2*pi*корень(1,5/10)= 2,433467206 сек ~
2,4 сек
пусть условия на этом уровне нормальные (P = 10^5 Па, T = 273 K)
запишем первый закон Ньютона:
Fa + mg + F = 0, где Fa - Архимедова сила, F - искомая сила натяжения
в проекции на некоторую ось, направленную в сторону Fa:
Fa - mg - F = 0
2) пусть высота подъема шара - максимальная, тогда силы, действующие на него, скомпенсированы (аналогично):
Fa - mg = 0
пусть на h(max) плотность воздуха равна p'(в) = p(в) / 2.
составим систему уравнений:
p(в) g V = F + mg
p'(в) g V = mg
вычитаем из первого уравнения второе
gV (p(в) - p'(в)) = F
F = p(в) g V / 2.
3) по уравнению Менделеева-Клапейрона (пусть воздух - идеальный газ):
P V = m R T / M
делим на объем обе части
P = p R T / M => p = P M / R T.
молярная масса воздуха M = 29*10^-3 кг/моль
F = P M g V / 2 R T
F = 10^5 * 29 * 6 / 2 * 8,31 * 273,
F = 3 834,913 H ≈ 3,8 кН