решите Чему равна работа двигателя космического корабля массой 2 т при его переводе с орбиты, находящийся на расстоянии 100 км от поверхности Земли, на более высокую орбиту, находящуюся на расстоянии 300 км?
Горизонтальная составляющая скорости лягушки равна:
υ гор = υ×cosα
Тогда закон сохранения импульса системы тел запишется:
mυ×cosα = Mυu
Откуда:
υM = mυ×cosα/М
Вертикальная составляющая скорости лягушки υ×sinα. Она равна нулю в наивысшей точке полета лягушки, поэтому:
υ×sinα = gt/2
Откуда время:
t = 2υ×sinα/g
Так как, очевидно, при прыжке лягушки вперед доска начнет плыть в противоположном направлении, то необходимо, чтобы за время t суммарная скорость доски и лягушки (скорость сближения) обеспечила попадание лягушки в противоположный конец доски, то есть:
Объяснение:
Горизонтальная составляющая скорости лягушки равна:
υ гор = υ×cosα
Тогда закон сохранения импульса системы тел запишется:
mυ×cosα = Mυu
Откуда:
υM = mυ×cosα/М
Вертикальная составляющая скорости лягушки υ×sinα. Она равна нулю в наивысшей точке полета лягушки, поэтому:
υ×sinα = gt/2
Откуда время:
t = 2υ×sinα/g
Так как, очевидно, при прыжке лягушки вперед доска начнет плыть в противоположном направлении, то необходимо, чтобы за время t суммарная скорость доски и лягушки (скорость сближения) обеспечила попадание лягушки в противоположный конец доски, то есть:
(υгор = υМ)t = l
(υ×cosα + mυcosα/M) × 2υ×sinα/g = l
υ²×2cosα×sinα/g × (1+m/M) = l
υ²×sin2α/g × (1+m/M) = l
υ = √lg/sin2α×(1+m/M)
ответ: υ = √lg/sin2α×(1+m/M)
(m1+m2)*v0=m1*v1 - m2*v2. ( v0-начальная скорость лодкис мальчиком. находящимся в ней, v1-скорость лодки после прыжка мальчика, v2-скорость мальчика, m1-масса лодки, m2-масса мальчика) . выразим скорость лодки.
m1*v1= m2*v2 + ( m1+m2)*v0.
v1=( m2*v2 + ( m1+m2)*v0) / m1.
v1=( 50*4 + (200+50)*1 ) / 200=2,25м/c. ( лодка будет двигаться в ту же сторону. что и до прыжка мальчика) .
2) (m1+m2)*v0 = m1*v1 + m2*v2.
m*v1=( m1+m2)*v0 - m2*v2.
v1=( m1+m2)*v0 - m2*v2) / m1.
v1=( 200+50)*1 - 50*2 ) / 200=0,75 м/c.