По второму закону Кирхгофа, при отсутствии в контуре источников эдс сумма напряжений на резисторе и конденсаторе равна 0: Ur+Uc=0. Но Ur=R*i=R*dq/dt, а Uc=1/C*∫i(t)*dt=q/C. Отсюда получаем уравнение R*dq/dt+q/C=0, или R*dq/dt=-q/C, или dq/q=-dt/(R*C). Интегрируя, находим ln/q/=e^(-t/(R*C))+ln q0, откуда q=q0*e^(-t/(R*C)), где q0 - заряд конденсатора в момент времени t=0.Отсюда ток в контуре i=dq/dt=-q0/(R*C)*e^(-t/(R*C)). Так как по условию при t=0 i=0, то в момент времени t=0 ток мгновенно возрастает от 0 до q0/(R*C) и затем убывает, стремясь к 0 при t⇒∞. Пусть t1 - время, через которое сила тока уменьшится в 2 раза, то есть станет равной i1=q0/(2*R*C). Решая уравнение q0/(R*C)*e^(-t1/(R*C))=q0/(2*R*C), получаем e^(-t1/(R*C))=1/2. Отсюда e^(t1/(R*C))=2, t1/(R*C)=ln2, t1=R*C*ln2 с. ответ: 1) q(t)=q0*e^(-t/(R*C)), 2) через R*C*ln2 с.
Колебания скрипичной струныЕсли затухание собственных колебаний в системе мало, то механизм, поддерживающий автоколебания, подводит к системе за период энергию, составляющую лишь малую долю всей энергии, которой обладает колеблющаяся система. Поэтому он очень мало изменяет характер поддерживаемых колебаний автоколебания как по частоте, так и по распределению амплитудоказываются близкими к нормальным колебаниям системы. Например, при игре на скрипке обычно основной тон колебаний таков, что для него вдоль свободной части струны — от пальца, прижимающего ее к грифу, до подставки — укладывается половина длины волны. Частота колебаний скрипичной струны, возбуждаемой смычком, совпадает с частотой собственных колебаний, которые получаются, если эту струну оттянуть, а затем отпустить.
ответ: 1) q(t)=q0*e^(-t/(R*C)), 2) через R*C*ln2 с.