1 Два одинаковых точечных заряда q взаимодействуют в вакууме с силой F=0,1 Н. Расстояние между зарядами r = 6 м. Найти эти заряды.
По закону Кулона , где
2 Какое число N электронов содержит заряд в одну единицу заряда в системе единиц СИ (1 Кл)? Элементарный заряд
электронов.
3 Два точечных заряда q1 и q2 находятся на расстоянии r друг от друга. Если расстояние между ними уменьшается на величину Dr = 50 см, то сила взаимодействия F увеличивается в два раза. Найти расстояние r.
4 Тонкая шелковая нить выдерживает максимальную силу натяжения Т=10 мН. На этой нити подвешен шарик массы m = 0,6 г, имеющий положительный заряд q1 = 11 нКл. Снизу в направлении линии подвеса к нему подносят шарик, имеющий отрицательный заряд q2= -13 нКл. При каком расстоянии r между шариками нить разорвется?
5 Отрицательный точечный заряд Q расположен на прямой, соединяющей два одинаковых положительных точечных заряда q. Расстояния между отрицательным зарядом и каждым из положительных относятся между собой, как 1:3. Во сколько раз изменится сила, действующая на отрицательный заряд, если его поменять местами с ближайшим положительным?
Положительные заряды q могут быть расположены как по обе стороны от отрицательного заряда Q, так и по одну сторону от него. Отношение сил в первом и втором случаях:
где r – расстояние от заряда Q до ближайшего положительного заряда q.
6 Два отрицательных точечных заряда q1 = - 9 нКл и q2= - 36 нКл расположены на расстоянии r=3м друг от друга. Когда в некоторой точке поместили заряд q0, то все три заряда оказались в равновесии. Найти заряд q0 и расстояние между зарядами q1 и q0.
Обозначим модуль силы буквой F с двумя индексами, первый из которых показывает, на какой заряд действует сила, а второйсо стороны какого заряда она действует (например, F01–сила, действующая на заряд q0 со стороны заряда q1). Возьмем в качестве координатной оси ОХ прямую, проходящую через заряды q1 и q2 (рис. 324). За начало отсчета О примем точку, где находится заряд q1а за положительное направление от заряда q1 к заряду q2. Закон Кулона (в нашей записи) дает возможность определить лишь модуль вектора силы, а знак проекции вектор будет, как обычно, положительным, если сила направлена в положительном направлении оси ОХ, и отрицательным в противном случае.
На каждый из трех зарядов действуют со стороны двух других по две силы. Для равновесия необходимо, чтобы эти две силы были противоположными по направлению. Легко видеть, что это условие выполняется лишь в случае, когда заряд q0 находится на оси ОХ между зарядами q1 и q2 и имеет противоположный по сравнению с q1, и q2 знак. Пусть расстояние между зарядами q1 и q0 равно х (0<х<r). Тогда (рис. 324):
Условие а) приводит к квадратному уравнению относительно х:
Для корней этого уравнения
выполняются условия: 0<x1<r в любом случае; x2<0 при |q2| > |q1|; x2>г при |q2| < |q1|. Второй корень должен быть отброшен, как не удовлетворяющий условиям равновесия. Таким образом.
Условие б) дает отсюда
7 Три одинаковых точечных заряда q = 20 нКл расположены в вершинах равностороннего треугольника. На каждый заряд действует сила F=10mH. Найти длину а стороны треугольника.
Каждый заряд q взаимодействует с двумя другими зарядами q, расположенными на расстоянии а от рассматриваемого (рис. 325).
Поэтому на любой заряд действуют две равные по модулю силы . Равнодействующая этих сил (проекция векторной суммы этих сил на диагональ параллелограмма)
; отсюда
8 Три одинаковых точечных заряда q1=q2 =q3 = 9 нКл расположены в вершинах равностороннего треугольника. Какой точечный заряд q0 нужно поместить в центре треугольника, чтобы система находилась в равновесии?
На заряд q1 действуют две равные по модулю силы со стороны зарядов q2 и q3, а также сила со стороны заряда q0 (рис.326). Ввиду равенства зарядов q1=q2=q3 = q получаем . На заряд q0 действуют три равные по модулю силы, равнодействующая которых равна нулю.
Q1 = c1*m1*Δt = 880*0,050*24 = 1 056 Дж
На нагревание воды:
Q2 = c2*m2*Δt = 4200*0,120*24 = 12 096 Дж
Суммарное количество теплоты:
Q = Q1 + Q2 = 1 056 + 12 096 ≈ 13 200 Дж
Потери составляют 20%, значит на нагревание затрачено :
Qзат = 1,2*Q = 1,2*13 200 ≈ 15 800 Дж (1)
Работа электронагревателя:
A = N*t = 12,5*t (2)
Приравниваем (2) и (1)
12,5*t = 15 800
t = 15 800 / 12,5 ≈ 1600 с или 1260/60 = 21 минута
ответ: 21 минута
ответ: ниже
Объяснение: Закон Кулона
1 Два одинаковых точечных заряда q взаимодействуют в вакууме с силой F=0,1 Н. Расстояние между зарядами r = 6 м. Найти эти заряды.
По закону Кулона , где
2 Какое число N электронов содержит заряд в одну единицу заряда в системе единиц СИ (1 Кл)? Элементарный заряд
электронов.
3 Два точечных заряда q1 и q2 находятся на расстоянии r друг от друга. Если расстояние между ними уменьшается на величину Dr = 50 см, то сила взаимодействия F увеличивается в два раза. Найти расстояние r.
4 Тонкая шелковая нить выдерживает максимальную силу натяжения Т=10 мН. На этой нити подвешен шарик массы m = 0,6 г, имеющий положительный заряд q1 = 11 нКл. Снизу в направлении линии подвеса к нему подносят шарик, имеющий отрицательный заряд q2= -13 нКл. При каком расстоянии r между шариками нить разорвется?
5 Отрицательный точечный заряд Q расположен на прямой, соединяющей два одинаковых положительных точечных заряда q. Расстояния между отрицательным зарядом и каждым из положительных относятся между собой, как 1:3. Во сколько раз изменится сила, действующая на отрицательный заряд, если его поменять местами с ближайшим положительным?
Положительные заряды q могут быть расположены как по обе стороны от отрицательного заряда Q, так и по одну сторону от него. Отношение сил в первом и втором случаях:
где r – расстояние от заряда Q до ближайшего положительного заряда q.
6 Два отрицательных точечных заряда q1 = - 9 нКл и q2= - 36 нКл расположены на расстоянии r=3м друг от друга. Когда в некоторой точке поместили заряд q0, то все три заряда оказались в равновесии. Найти заряд q0 и расстояние между зарядами q1 и q0.
Обозначим модуль силы буквой F с двумя индексами, первый из которых показывает, на какой заряд действует сила, а второйсо стороны какого заряда она действует (например, F01–сила, действующая на заряд q0 со стороны заряда q1). Возьмем в качестве координатной оси ОХ прямую, проходящую через заряды q1 и q2 (рис. 324). За начало отсчета О примем точку, где находится заряд q1а за положительное направление от заряда q1 к заряду q2. Закон Кулона (в нашей записи) дает возможность определить лишь модуль вектора силы, а знак проекции вектор будет, как обычно, положительным, если сила направлена в положительном направлении оси ОХ, и отрицательным в противном случае.
На каждый из трех зарядов действуют со стороны двух других по две силы. Для равновесия необходимо, чтобы эти две силы были противоположными по направлению. Легко видеть, что это условие выполняется лишь в случае, когда заряд q0 находится на оси ОХ между зарядами q1 и q2 и имеет противоположный по сравнению с q1, и q2 знак. Пусть расстояние между зарядами q1 и q0 равно х (0<х<r). Тогда (рис. 324):
а) на q0 действуют силы
б) на q1 действуют силы
в) на q2 действуют силы
При равновесии всех трех зарядов:
а)–F01+F02 = 0; б) -F12 + F10 = 0; в) F21-F20 = 0.
Условие а) приводит к квадратному уравнению относительно х:
Для корней этого уравнения
выполняются условия: 0<x1<r в любом случае; x2<0 при |q2| > |q1|; x2>г при |q2| < |q1|. Второй корень должен быть отброшен, как не удовлетворяющий условиям равновесия. Таким образом.
Условие б) дает отсюда
7 Три одинаковых точечных заряда q = 20 нКл расположены в вершинах равностороннего треугольника. На каждый заряд действует сила F=10mH. Найти длину а стороны треугольника.
Каждый заряд q взаимодействует с двумя другими зарядами q, расположенными на расстоянии а от рассматриваемого (рис. 325).
Поэтому на любой заряд действуют две равные по модулю силы . Равнодействующая этих сил (проекция векторной суммы этих сил на диагональ параллелограмма)
; отсюда
8 Три одинаковых точечных заряда q1=q2 =q3 = 9 нКл расположены в вершинах равностороннего треугольника. Какой точечный заряд q0 нужно поместить в центре треугольника, чтобы система находилась в равновесии?
На заряд q1 действуют две равные по модулю силы со стороны зарядов q2 и q3, а также сила со стороны заряда q0 (рис.326). Ввиду равенства зарядов q1=q2=q3 = q получаем . На заряд q0 действуют три равные по модулю силы, равнодействующая которых равна нулю.