Объяснение:
1)
Время падения с высоты H:
t = √ (2·H/g)
Треть времени:
Δt = t / 3.
2)
Путь за первую треть:
S₁ = g·(Δt)²/2
Но S₀ = 0
Тогда:
Vcp ₁ = (S₁ - S₀) / Δt = (g·(Δt)²/2 - 0) / Δt = g·Δt/2 (1)
3)
Путь за две трети:
S₂ = g·(2·Δt)² / 2 = 4·g·Δt² / 2
Путь за 3 трети:
S₂ = g·(3·Δt)² / 2 = 9·g·Δt² / 2
ΔS₃ = S₃ - S₂ = (9·g·Δt² / 2) - (4·g·Δt² / 2) = 5·g·Δt² / 2
Средняя скорость:
Vcp ₃ = ΔS₃ / Δt = 5·g·Δt / 2 (2)
4)
Находим отношение скоростей. Разделим (2) на (1):
Vcp ₃ / Vcp₁ = 5
Правильный ответ:
4) 5
ответ: 3,4 c
Пусть за время t автомобиль преодолеет растояние s
s = v0t + ( at² )/2
Будем считать что v0 = 0 м/с иначе задачу не решить + движение у нас равноускоренное значит когда-то v = v0 = 0 м/с
Тогда s = ( at² )/2
Согласно условию задачи за последнюю секунду равноускоренного движения автомобиль половину пути
Тогда
( at² )/2 - ( a( t - 1 )² )/2 = s/2
( a( t² - ( t - 1 )² ) )/2 = ( at² )/4
( t² - ( t - 1 )² )/2 = t²/4 | * 2
t² - ( t - 1 )² = t²/2
t² - ( t² + 1 - 2t ) = t²/2
t² - t² - 1 + 2t = t²/2
- 1 + 2t = t²/2
4t - 2 = t²
-t² + 4t - 2 = 0 | * ( -1 )
t² - 4t + 2 = 0
D1 = 4 - 2 = 2 ; √D1 = √2
t1 = 2 + √2 ≈ 3,4 c
t2 = 2 - √2 ≈ 0,6 c - ответ неподходящий под условие ведь тело как минимум двигалось 1 с
То есть t = t1 = 3,4 c
Объяснение:
1)
Время падения с высоты H:
t = √ (2·H/g)
Треть времени:
Δt = t / 3.
2)
Путь за первую треть:
S₁ = g·(Δt)²/2
Но S₀ = 0
Тогда:
Vcp ₁ = (S₁ - S₀) / Δt = (g·(Δt)²/2 - 0) / Δt = g·Δt/2 (1)
3)
Путь за две трети:
S₂ = g·(2·Δt)² / 2 = 4·g·Δt² / 2
Путь за 3 трети:
S₂ = g·(3·Δt)² / 2 = 9·g·Δt² / 2
Тогда:
ΔS₃ = S₃ - S₂ = (9·g·Δt² / 2) - (4·g·Δt² / 2) = 5·g·Δt² / 2
Средняя скорость:
Vcp ₃ = ΔS₃ / Δt = 5·g·Δt / 2 (2)
4)
Находим отношение скоростей. Разделим (2) на (1):
Vcp ₃ / Vcp₁ = 5
Правильный ответ:
4) 5
ответ: 3,4 c
Объяснение:
Пусть за время t автомобиль преодолеет растояние s
s = v0t + ( at² )/2
Будем считать что v0 = 0 м/с иначе задачу не решить + движение у нас равноускоренное значит когда-то v = v0 = 0 м/с
Тогда s = ( at² )/2
Согласно условию задачи за последнюю секунду равноускоренного движения автомобиль половину пути
Тогда
( at² )/2 - ( a( t - 1 )² )/2 = s/2
( a( t² - ( t - 1 )² ) )/2 = ( at² )/4
( t² - ( t - 1 )² )/2 = t²/4 | * 2
t² - ( t - 1 )² = t²/2
t² - ( t² + 1 - 2t ) = t²/2
t² - t² - 1 + 2t = t²/2
- 1 + 2t = t²/2
4t - 2 = t²
-t² + 4t - 2 = 0 | * ( -1 )
t² - 4t + 2 = 0
D1 = 4 - 2 = 2 ; √D1 = √2
t1 = 2 + √2 ≈ 3,4 c
t2 = 2 - √2 ≈ 0,6 c - ответ неподходящий под условие ведь тело как минимум двигалось 1 с
То есть t = t1 = 3,4 c