Маятник Максвелла представляет собой диск, неподвижно закрепленный на тонком стержне. На концах стержня симметрично относительно диска закреплены нити, с которых маятник подвешен к штативу. При вращении маятника нити могут наматываться на стержень или сматываться с него, обеспечивая тем самым перемещение маятника вверх - вниз. Если, намотав нити на ось, поднять маятник на некоторую высоту и отпустить его, то он начнет опускаться под действием силы тяжести, приобретая одновременно и вращательное движение. В нижней точке, когда маятник опустится на полную длину нитей, поступательное движение вниз прекратится. Нити станут наматываться на вращающийся по инерции стержень, а маятник начнет подниматься вверх, постепенно замедляя свое вращение. После достижения наивысшей точки цикл колебательного движения возобновится.
Если mg — сила тяготения; T — сила натяжения одной нити; R — радиус стержня; J — момент инерции маятника; тогда уравнение для поступательного движения можно записать так:
mg − 2T = ma,
где a — ускорение центра масс. Уравнение для вращательного движения при этом будет иметь вид:
M = mR(g − a) = 2TR=J ε,
где ε – угловое ускорение.
Маятник движется с постоянным ускорением. Если h – расстояние, пройденное за время t, при равноускоренном движении с нулевой начальной скоростью, то момент инерции можно найти по формуле:
Размеры сосуда подразумеваются достаточно большими, и, к тому же, вам никто не сказал что сосуд прозрачный.
К задаче. По закону преломления лучи, выходящие из воды, будут рассеиваться. Если рассматривать лучи. удаляясь от центра, то преломленный луч в какой-то момент "ляжет" на поверхность воды, т.е. не пойдёт наверх. Именно это удаление от центра необходимо найти. Вот вкратце философия данной задачи.
Ввод обозначений. h - глубина, на которой находится источник света. r - искомый радиус диска, то есть такое расстояние на поверхности воды от центра, на котором преломленный луч ложится на поверхность. a (альфа) - угол падения, т.е. угол между лучём входящим в поверхность раздела двух сред и нормалью к этой поверхности. b (бета) - угол между направлением выходящего луча и нормалью к поверхности воды. Запишем, что h=0.4 м, b=0. Также для удобства определим n_a - показатель преломления воздуха, n_w - показатель преломления воды.
Решение. По закону преломления запишем sin(a)/sin(b)=n_w/n_a. (*) Если сделать правильный рисунок, нетрудно видеть, что sin(a)=r/sqrt(h^2+r^2). sin(b)=1, т.к. b=pi/2. Подставляя эти синусы в уравнение (*), получаем уравнение, решив которое относительно r, найдём ответ.
Маятник Максвелла представляет собой диск, неподвижно закрепленный на тонком стержне. На концах стержня симметрично относительно диска закреплены нити, с которых маятник подвешен к штативу. При вращении маятника нити могут наматываться на стержень или сматываться с него, обеспечивая тем самым перемещение маятника вверх - вниз. Если, намотав нити на ось, поднять маятник на некоторую высоту и отпустить его, то он начнет опускаться под действием силы тяжести, приобретая одновременно и вращательное движение. В нижней точке, когда маятник опустится на полную длину нитей, поступательное движение вниз прекратится. Нити станут наматываться на вращающийся по инерции стержень, а маятник начнет подниматься вверх, постепенно замедляя свое вращение. После достижения наивысшей точки цикл колебательного движения возобновится.
Если mg — сила тяготения; T — сила натяжения одной нити; R — радиус стержня; J — момент инерции маятника; тогда уравнение для поступательного движения можно записать так:
mg − 2T = ma,
где a — ускорение центра масс. Уравнение для вращательного движения при этом будет иметь вид:
M = mR(g − a) = 2TR=J ε,
где ε – угловое ускорение.
Маятник движется с постоянным ускорением. Если h – расстояние, пройденное за время t, при равноускоренном движении с нулевой начальной скоростью, то момент инерции можно найти по формуле:
J=mR2((gt2)/(2h)-1)
Размеры сосуда подразумеваются достаточно большими, и, к тому же, вам никто не сказал что сосуд прозрачный.
К задаче. По закону преломления лучи, выходящие из воды, будут рассеиваться. Если рассматривать лучи. удаляясь от центра, то преломленный луч в какой-то момент "ляжет" на поверхность воды, т.е. не пойдёт наверх. Именно это удаление от центра необходимо найти. Вот вкратце философия данной задачи.
Ввод обозначений. h - глубина, на которой находится источник света. r - искомый радиус диска, то есть такое расстояние на поверхности воды от центра, на котором преломленный луч ложится на поверхность. a (альфа) - угол падения, т.е. угол между лучём входящим в поверхность раздела двух сред и нормалью к этой поверхности. b (бета) - угол между направлением выходящего луча и нормалью к поверхности воды.
Запишем, что h=0.4 м, b=0. Также для удобства определим n_a - показатель преломления воздуха, n_w - показатель преломления воды.
Решение.
По закону преломления запишем sin(a)/sin(b)=n_w/n_a. (*)
Если сделать правильный рисунок, нетрудно видеть, что sin(a)=r/sqrt(h^2+r^2).
sin(b)=1, т.к. b=pi/2.
Подставляя эти синусы в уравнение (*), получаем уравнение, решив которое относительно r, найдём ответ.