Робот оснащён двумя отдельно управляемыми колёсами, радиус каждого из колёс робота равен 10 см. Левым колесом управляет мотор А, правым колесом управляет мотор В. Колёса напрямую подсоединены к моторам (см. схему робота).
Определите, на сколько градусов должна повернуться ось мотора А (при работающем моторе B), чтобы робот проехал прямолинейный участок трассы длиной 120 см.
Максимальная скорость вращения моторов 2 об/с. Длина колёсной базы робота равна 40 см. Масса робота равна 5 кг. Примите π ≈ 3.
Это обозначение в измеряющем приборе (например: линейке, градуснике, термометре и т.д.), которое делит целое значение на несколько раз. Для этого нужно из большего числа вычесть меньшее и полученный результат разделить на количество линий (чёрточек, полосок). Это и есть цена деления.
Например: на градуснике показывает температуру 36,6°C. Но как мы понимаем что именно 36,6°C, а не допустим 36,5? На градуснике цена деления 0,1°C, и по этим полоскам мы определяем полную температуру. Вычитаем из большего число меньшее и делим на линии. Получается 0,1.
В общем, вкратце это просто сколько линий (полосок) находится на приборе (10 | | | 20, эта чёрточка равна 2,5 и из этого следует что она равна 12,5, а следующая 15, 17,5 и 20).
Надеюсь понятно объяснил.
Для любых фигур существует такой термин, как высота. Высотой обычно называется измеряемая величина какой -либо фигуры в вертикальном положении. У цилиндра высота -это линия, перпендикулярная двум его параллельным основаниям. Также у него есть образующая. Образующая цилиндра -это линия, вращением которой получается цилиндр. Она, в отличие от образующей других фигур, например конуса, совпадает с высотой.
Рассмотрим формулу, с которой можно найти высоту:
V=πR^2*H, где R - радиус основания цилиндра, H - искомая высота.
Если вместо радиуса дан диаметр, данная формула видоизменяется следующим образом:
V=πR^2*H=1/4πD^2*H
Соответственно, высота цилиндра равна:
H=V/πR^2=4V/D^2
Также высоту можно определить, исходя из диаметра и площади цилиндра. Существует площадь боковой и площадь полной поверхности цилиндра. Часть поверхности цилиндра, ограниченная цилиндрической поверхностью, называют боковой поверхностью цилиндра. Площадь полной поверхности цилиндра включает в себя и площадь его оснований.
Площадь боковой поверхности цилиндра вычисляется по следующей формуле:
S=2πRH
Преобразовав данное выражение, найдите высоту:
H=S/2πR
Если дана площадь полной поверхности цилиндра, вычисляйте высоту несколько иным Площадь полной поверхности цилиндра равна:
S=2πR(H+R)
Вначале преобразуйте данную формулу как показано ниже:
S=2πRH+2πR
Затем найдите высоту:
H=S-2πR/2πR
Через цилиндр можно провести прямоугольное сечение. Ширина этого сечения будет совпадать с диаметрами оснований, а длина - с образующими фигуры, которые равны высоте. Если провести через это сечение диагональ, то можно легко заметить, что образуется прямоугольный треугольник. В данном случае диагональ является гипотенузой треугольника, катет -диаметром, а второй катет- высотой и образующей цилиндра. Тогда высоту можно найти по теореме Пифагора:
b^2 =sqrt (c^2 -a^2)