рядом находятся 2 противоположно заряженных металлических шарика. первый имеет заряд 0,1 мКл, второй 0,2 мкл.Определите сколько электронов от первого шарика должно перейти на второй чтобы они перестали притягиваться.
так как шарики с зарядом q каждый сначала находятся на расстоянии l друг от друга, то силу отталкивания между ними f0 можно найти из закона кулона по такой формуле:
f0=kq2l2(1)
изначально каждый из шариков будет находиться в равновесии под действием трёх сил: силы тяжести mg, силы натяжения нити t0 и силы кулоновского отталкивания f0 (смотрите левую часть схемы к решению). учитывая (1), запишем первый закон ньютона в проекции на оси x и y:
⎧⎩⎨t0⋅cosα=mgt0⋅sinα=kq2l2
поделим нижнее равенство системы на верхнее, тогда получим:
tgα=kq2mgl2(2)
после того как один из шаров разрядят, между шарами исчезнет сила отталкивания, они придут в движении и, столкнувшись, разделят заряд q одного из шариков поровну (то есть теперь на каждом из шаров заряд равен q2). далее шары опять разойдутся так, что расстояние между ними станет равным l (смотрите правую часть схемы). теперь сила отталкивания между шариками f по закону кулона равна:
f=kq24l2(3)
теперь на каждый шарик действуют три силы: сила тяжести mg, сила натяжения нити t и сила кулоновского отталкивания f. шарики опять находятся в равновесии, поэтому, учитывая (3), опять запишем первый закон ньютона в проекциях на оси координат:
⎧⎩⎨t⋅cosβ=mgt⋅sinβ=kq24l2
аналогично поделим нижнее равенство на верхнее:
tgβ=kq24mgl2(4)
теперь поделим (2) на (4):
tgαtgβ=kq2⋅4mgl2mgl2⋅kq2 tgαtgβ=4l2l2
в условии сказано, что шарики подвешены на длинных нитях, значит углы α и β — малые, поэтому справедливо равенство sinα≈tgα и sinβ≈tgβ. тогда:
sinαsinβ=4l2l2
из рисунка понятно, что sinα=l2a и sinβ=l2a (здесь a — длина нити), значит:
Дано:
P = 1 039 Вт
m1 = 0,565 кг
t1 = -27 °с
tп = 0 °с
tk = 100 °c
m2 = 0,073 кг
t = 2 520 c
λ = 330000 Дж / кг
L = 2260000 Дж / кг
с1 = 2100 Дж / кг * °с
с2 = 4200 Дж / кг * °с
Найти:
μ - ?
μ = Aп / Аз * 100 %
Аз = 2520 * 1039 = 2 618 280 Дж
Ап = Q
Q = Q1 + Q2 + Q3 + Q4
Q1 = c1m1(tп - t1) = 2100 * 0,565 * 27 = 32 035,5 Дж
Q2 = λm1 = 330000 * 0,565 = 186 450 Дж
Q3 = c2m1(tk - tп) = 4200 * 0,565 * 100 = 237 300 Дж
Q4 = Lm2 = 2260000 * 0,073 = 164 980 Дж
Aп = Q = 32 035,5 + 186 450 + 237 300 + 164 980 = 620 765,5 Дж
μ = 620 765,5 / 2 618 280 * 100% = 23,7%
Объяснение:
так как шарики с зарядом q каждый сначала находятся на расстоянии l друг от друга, то силу отталкивания между ними f0 можно найти из закона кулона по такой формуле:
f0=kq2l2(1)изначально каждый из шариков будет находиться в равновесии под действием трёх сил: силы тяжести mg, силы натяжения нити t0 и силы кулоновского отталкивания f0 (смотрите левую часть схемы к решению). учитывая (1), запишем первый закон ньютона в проекции на оси x и y:
⎧⎩⎨t0⋅cosα=mgt0⋅sinα=kq2l2поделим нижнее равенство системы на верхнее, тогда получим:
tgα=kq2mgl2(2)после того как один из шаров разрядят, между шарами исчезнет сила отталкивания, они придут в движении и, столкнувшись, разделят заряд q одного из шариков поровну (то есть теперь на каждом из шаров заряд равен q2). далее шары опять разойдутся так, что расстояние между ними станет равным l (смотрите правую часть схемы). теперь сила отталкивания между шариками f по закону кулона равна:
f=kq24l2(3)теперь на каждый шарик действуют три силы: сила тяжести mg, сила натяжения нити t и сила кулоновского отталкивания f. шарики опять находятся в равновесии, поэтому, учитывая (3), опять запишем первый закон ньютона в проекциях на оси координат:
⎧⎩⎨t⋅cosβ=mgt⋅sinβ=kq24l2аналогично поделим нижнее равенство на верхнее:
tgβ=kq24mgl2(4)теперь поделим (2) на (4):
tgαtgβ=kq2⋅4mgl2mgl2⋅kq2 tgαtgβ=4l2l2в условии сказано, что шарики подвешены на длинных нитях, значит углы α и β — малые, поэтому справедливо равенство sinα≈tgα и sinβ≈tgβ. тогда:
sinαsinβ=4l2l2из рисунка понятно, что sinα=l2a и sinβ=l2a (здесь a — длина нити), значит:
l⋅2a2a⋅l=4l2l2 ll=4l2l2 4l3=l3 l=l4–√3посчитаем ответ:
l=0,054–√3=0,031м