Угол между нормалью к поверхности (линией, опущенной перпендикулярно к поверхности) и самой поверхностью равен 90°. Обозначим угол между нормалью и стороной угла β' как β, тогда:
β + β' = 90°, значит угол β равен:
β = 90° - β' (1)
По закону отражения имеем:
угол падения и угол отражения лежат в одной плоскости с перпендикуляром, проведённым к поверхности; угол падения равен углу отражения:
∠α = ∠β
Тогда если угол падения равен углу отражения, то выражение (1) для угла β будет справедливым и для α:
Давно:
β' = 10°
α - ?
Угол между нормалью к поверхности (линией, опущенной перпендикулярно к поверхности) и самой поверхностью равен 90°. Обозначим угол между нормалью и стороной угла β' как β, тогда:
β + β' = 90°, значит угол β равен:
β = 90° - β' (1)
По закону отражения имеем:
угол падения и угол отражения лежат в одной плоскости с перпендикуляром, проведённым к поверхности; угол падения равен углу отражения:
∠α = ∠β
Тогда если угол падения равен углу отражения, то выражение (1) для угла β будет справедливым и для α:
α = β = 90° - β' = 90° - 10° = 80°
ответ: 80°.