Стержень массы m/2 длины L (половина исходного стержня длины 2L) имеет момент инерции относительно оси проходящей через край стержня J1 = (m/2)*L^2/3 (табличное значение)
момент инерции всего изогнутого стержня состоит из суммы 2 частей J = J1*2 = m*L^2/3
центр масс стержня массы m/2 длины L расположен на расстоянии L/2 от точки подвеса
центр масс всего изогнутого стержня массы m расположен в центре отрезка соединяющем половинки и находится на расстоянии r=L/2*1/корень(2) от точки подвеса
при малом отклонении системы из равновесия на угол фи возникает возвращающий момент сил M = -mg*r*sin( фи ) ~ - m*g*r*фи = - m*g*фи*L/2*1/корень(2)
уравнение движения твердого тела около оси вращения J*фи`` = M подставляем J и М
m*L^2/3*фи`` = - m*g*фи*L/2*1/корень(2) фи`` = - фи*3*g/(L*2*корень(2))=- - фи*w^2 - уравнение колебаний с угловой частотой w w^2=3*g/(L*корень(8)) w = корень(3*g/(L*корень(8))) - это ответ
для школьного уровня достаточно было получить расстояние от точки подвеса до центра масс r=L/2*1/корень(2) = L/корень(8) и подставить в формулу, которая неверна для массивного стержня но верна для математического маятника (точечный груз на невесомой нерастяжимой нити) w1 = корень(g/r) =корень(g*корень(8)/L) - этот ответ получен в рамках знаний школьной программы, но он неверный )))
Проведешь сам, а я расскажу что надо делать: Для проведения эксперимента нам понадобится брусок с разными гранями(чтобы высота не была равна ширине), динамометр, нить и какая-либо гладкая поверхность(гладкая - в смысле без ям и бугром, подойдет стол) Также забыл - в бруске должен быть крюк, или что-нибудь другое за что зацепим нить. Сначала закрепим брусок на грани с большей площадью и, прикрепив к нему нить с динамометром, будем "тащить" его по столу, желательно равномерно(даже обязательно, потому что только при равномерном движении сила упругости пружины динамометра будет равна силе трения). Запишем показания динамометра в таблицу(или на листик) Затем перевернем брусок на грань с меньшей площадью и проделаем то же самое. Также запишем показания в таблицу. Исходя из показаний получим, что от площади поверхности сила трения не зависит. Показания могут немного колебаться, т.к. стол может быть слегка неровным, тело может двигаться с небольшим ускорением, т.к. идеально равномерного движения практически невозможно добиться.
J1 = (m/2)*L^2/3 (табличное значение)
момент инерции всего изогнутого стержня состоит из суммы 2 частей J = J1*2 = m*L^2/3
центр масс стержня массы m/2 длины L расположен на расстоянии L/2 от точки подвеса
центр масс всего изогнутого стержня массы m расположен в центре отрезка соединяющем половинки и находится на расстоянии
r=L/2*1/корень(2) от точки подвеса
при малом отклонении системы из равновесия на угол фи возникает возвращающий момент сил
M = -mg*r*sin( фи ) ~ - m*g*r*фи = - m*g*фи*L/2*1/корень(2)
уравнение движения твердого тела около оси вращения
J*фи`` = M
подставляем J и М
m*L^2/3*фи`` = - m*g*фи*L/2*1/корень(2)
фи`` = - фи*3*g/(L*2*корень(2))=- - фи*w^2 - уравнение колебаний с угловой частотой w
w^2=3*g/(L*корень(8))
w = корень(3*g/(L*корень(8))) - это ответ
для школьного уровня достаточно было получить расстояние от точки подвеса до центра масс r=L/2*1/корень(2) = L/корень(8)
и подставить в формулу, которая неверна для массивного стержня но верна для математического маятника (точечный груз на невесомой нерастяжимой нити)
w1 = корень(g/r) =корень(g*корень(8)/L) - этот ответ получен в рамках знаний школьной программы, но он неверный )))
Для проведения эксперимента нам понадобится брусок с разными гранями(чтобы высота не была равна ширине), динамометр, нить и какая-либо гладкая поверхность(гладкая - в смысле без ям и бугром, подойдет стол)
Также забыл - в бруске должен быть крюк, или что-нибудь другое за что зацепим нить.
Сначала закрепим брусок на грани с большей площадью и, прикрепив к нему нить с динамометром, будем "тащить" его по столу, желательно равномерно(даже обязательно, потому что только при равномерном движении сила упругости пружины динамометра будет равна силе трения). Запишем показания динамометра в таблицу(или на листик)
Затем перевернем брусок на грань с меньшей площадью и проделаем то же самое. Также запишем показания в таблицу. Исходя из показаний получим, что от площади поверхности сила трения не зависит. Показания могут немного колебаться, т.к. стол может быть слегка неровным, тело может двигаться с небольшим ускорением, т.к. идеально равномерного движения практически невозможно добиться.