Жёсткость пружины k начальная деформация h массы брусков m1, m2 скорость первого бруска в момент когда отпускают второй m1 v1^2 / 2 = k h^2 / 2 v1 = h корень (k / m1) ведём отсчёт времени и координат брусков от момента и положений, когда отпускают второй d^2 x1 / dt^2 = - k/m1 (x1-x2), d^2 x2 / dt^2 = - k/m2 (x2-x1) dx1 / dt = v1 при t = 0, dx2 / dt = 0 при t = 0 вычитая из первого второе получим d^2 (x1-x2) / dt^2 = (-k/m1 - k/m2) (x1-x2) откуда ясно, что величина (x1-x2) будет испытывать гармонические колебания с частотой омега = корень (k/m1 + k/m2) в начальный момент d(x1-x2) / dt = v1, x1-x2 = 0 при нулевой координате скорость максимальна амплитуда равна максимальная скорость делить на частоту A = v1 / омега = h корень (k / m1) / корень (k/m1 + k/m2) = = h корень (1/m1) / корень (1/m1 + 1/m2) = h корень (m2/(m1+m2)) амплитуда величины x1-x2 это и есть максимальная деформация пружины 10 * корень (16/25) = 8
ЗАКОН АРХИМЕДА — закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.
Если тело произвольной формы занимает внутри жидкости объем V, то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела — ("жидкости все равно на что давить").
Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V — тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V. Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V, т. е. pgV.
начальная деформация h
массы брусков m1, m2
скорость первого бруска в момент когда отпускают второй
m1 v1^2 / 2 = k h^2 / 2
v1 = h корень (k / m1)
ведём отсчёт времени и координат брусков от момента и положений, когда отпускают второй
d^2 x1 / dt^2 = - k/m1 (x1-x2), d^2 x2 / dt^2 = - k/m2 (x2-x1)
dx1 / dt = v1 при t = 0, dx2 / dt = 0 при t = 0
вычитая из первого второе получим
d^2 (x1-x2) / dt^2 = (-k/m1 - k/m2) (x1-x2)
откуда ясно, что величина (x1-x2) будет испытывать гармонические колебания с частотой омега = корень (k/m1 + k/m2)
в начальный момент d(x1-x2) / dt = v1, x1-x2 = 0
при нулевой координате скорость максимальна
амплитуда равна максимальная скорость делить на частоту
A = v1 / омега = h корень (k / m1) / корень (k/m1 + k/m2) =
= h корень (1/m1) / корень (1/m1 + 1/m2) = h корень (m2/(m1+m2))
амплитуда величины x1-x2 это и есть максимальная деформация пружины
10 * корень (16/25) = 8
Если тело произвольной формы занимает внутри жидкости объем V, то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела — ("жидкости все равно на что давить").
Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V — тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V. Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V, т. е. pgV.