Вариант 1 1)А. по рассеянию α-частиц 2)Г. электромагнитные волны большой частоты 3) Б. 7 электронов 4)82 протона, 132 нейтрона 5) А. 6)а 7) Б. уменьшается на 2 единицы 8) Г. не изменяется
Покажем, как можно найти пройденный телом путь с графика зависимости скорости от времени.
Начнем с самого простого случая – равномерного движения. На рисунке 6.1 изображен график зависимости v(t) – скорости от времени. Он представляет собой отрезок прямой, параллельной осн времени, так как при равномерном движении скорость постоянна.
Фигура, заключенная под этим графиком, – прямоугольник (он закрашен на рисунке). Его площадь численно равна произведению скорости v на время движения t. С другой стороны, произведение vt равно пути l, пройденному телом. Итак, при равномерном движении
путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени.
Покажем теперь, что этим замечательным свойством обладает и неравномерное движение.
Пусть, например, график зависимости скорости от времени имеет вид кривой, изображенной на рисунке 6.2.
Вариант 1 1)А. по рассеянию α-частиц 2)Г. электромагнитные волны большой частоты 3) Б. 7 электронов 4)82 протона, 132 нейтрона 5) А. 6)а 7) Б. уменьшается на 2 единицы 8) Г. не изменяется
Объяснение:вот только 8 ответов
Покажем, как можно найти пройденный телом путь с графика зависимости скорости от времени.
Начнем с самого простого случая – равномерного движения. На рисунке 6.1 изображен график зависимости v(t) – скорости от времени. Он представляет собой отрезок прямой, параллельной осн времени, так как при равномерном движении скорость постоянна.
Фигура, заключенная под этим графиком, – прямоугольник (он закрашен на рисунке). Его площадь численно равна произведению скорости v на время движения t. С другой стороны, произведение vt равно пути l, пройденному телом. Итак, при равномерном движении
путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени.
Покажем теперь, что этим замечательным свойством обладает и неравномерное движение.
Пусть, например, график зависимости скорости от времени имеет вид кривой, изображенной на рисунке 6.2.