В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
birgowww
birgowww
01.06.2023 00:56 •  Физика

с задачей по физике! Период колебаний источника звука уменьшился в 6 раз. Скорость звука при этом не изменилась. Определи, изменилась ли при этом длина звуковой волны, и если изменилась, то как и во сколько раз.

ответ: длина волны( уменьшилась, увеличилась или не изменилась?)...в ...?раз.

Показать ответ
Ответ:
hrsalesaudit
hrsalesaudit
14.12.2022 08:39

va = - 10 м/с - из уравнения xa = 10 - 10*t, график в файле

ab = - 2 м/с² - из уравнения xb = - 4 + 5*t - t², график в файле

Кинематические характеристики тела В

xb(2) = - 4 + 5 * 2 - 2² = 2 м - координата

vb(2) = 5 - 2 * t = 5 - 2 * 2 = 1 м/с - скорость

10 - 10 * t = - 4 + 5 * t - t²

t² - 15 * t + 14 = 0

t₁ = 1 c, t₂ = - 15 c - не удовлетворяет

тела встретятся через 1 с

x = 10 - 10 * 1 = 0 м - координата встречи

Fтр = m * a = μ * m * g => μ = a / g = 2 м/с² / 10 м/с² = 0,2 - коэффициент трения

тело А движется равномерно => Fтяги = Fтр = μ * m * g = 0,2 * 0,5 кг * 10 м/с² = 1 Н


Два тела а и в, массы которых равны соответственно 0,5 кг и 0,2 кг, движутся по горизонтальной шерох
0,0(0 оценок)
Ответ:
korobkovaangelina
korobkovaangelina
22.04.2022 14:48

Формула бинома Ньютона является частным случаем разложения функции {\displaystyle (1+x)^{r}} (1+x)^r в ряд Тейлора:

{\displaystyle (1+x)^{r}=\sum _{k=0}^{\infty }{r \choose k}x^{k}} (1+x)^r=\sum_{k=0}^{\infty} {r \choose k} x^k,

где r может быть комплексным числом (в частности, отрицательным или вещественным). Коэффициенты этого разложения находятся по формуле:

{\displaystyle {r \choose k}={1 \over k!}\prod _{n=0}^{k-1}(r-n)={\frac {r(r-1)(r-2)\cdots (r-(k-1))}{k!}}} {\displaystyle {r \choose k}={1 \over k!}\prod _{n=0}^{k-1}(r-n)={\frac {r(r-1)(r-2)\cdots (r-(k-1))}{k!}}}

При этом ряд

{\displaystyle (1+z)^{\alpha }=1+\alpha {}z+{\frac {\alpha (\alpha -1)}{2}}z^{2}+...+{\frac {\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}}z^{n}+...} (1+z)^\alpha=1+\alpha{}z+\frac{\alpha(\alpha-1)}{2}z^2+...+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}z^n+

сходится при {\displaystyle |z|\leq 1} |z|\le 1.

В частности, при {\displaystyle z={\frac {1}{m}}} z=\frac{1}{m} и {\displaystyle \alpha =x\cdot m} \alpha=x\cdot m получается тождество

{\displaystyle \left(1+{\frac {1}{m}}\right)^{xm}=1+x+{\frac {xm(xm-1)}{2\;m^{2}}}+...+{\frac {xm(xm-1)\cdots (xm-n+1)}{n!\;m^{n}}}+\dots .} \left(1+\frac{1}{m}\right)^{xm}=1+x+\frac{xm(xm-1)}{2\; m^2}+...+\frac{xm(xm-1)\cdots(xm-n+1)}{n!\; m^n}+\dots.

Переходя к пределу при {\displaystyle m\to \infty } m\to\infty и используя второй замечательный предел {\displaystyle \lim _{m\to \infty }{\left(1+{\frac {1}{m}}\right)^{m}}=e} \lim_{m\to\infty}{\left(1+\frac{1}{m}\right)^{m}}=e, выводим тождество

{\displaystyle e^{x}=1+x+{\frac {x^{2}}{2}}+\dots +{\frac {x^{n}}{n!}}+\dots ,} e^x=1+x+\frac{x^2}{2}+\dots+\frac{x^n}{n!}+\dots,

которое именно таким образом было впервые получено Эйлером.

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота