Санки массой 5кг скатываются с горы которая образует с горизонтом угол 30. Пройдя расстояние 20м, санки развивает скорость 4 м/c. Вычислите количество тепла выделившееся при трении полозьев о снег. Большое за решение :3
Для всех трех задач вспомним, что радиус-вектор представляет собой гипотенузу прямоугольного треугольника, а его проекции на оси координат -- катеты этот треугольника.
1) Известна гипотенуза и один из катетов, другой катет ищем по теореме Пифагора:
y = sqrt(5²-2,5²) м = 4,33 м
2) Известна гипотенуза и один из углов треугольника. Следовательно,
xA = rA * cos α = 5 м * cos 60° = 5 м * 1/2 = 2,5 м yA = rA * sin α = 5 м * sin 60° = 5 м * sqrt(3) / 2 = 4,33 м
Складываем проекции вектора с проекциями радиус-вектора B относительно A:
xB = xA + xAB = 2,5 м + 1,83 м = 4,33 м yB = yA + yAB = 4,33 м + 0 = 4,33 м
Радиус-вектор вычисляем через теорему Пифагора:
rB = sqrt(4,33² + 4,33²) м = sqrt(150/4) = 5/2 * sqrt(6) = 6,12 м
Поскольку xB = yB, то угол между вектором rB и осью Ox составляет 45°.
3) Известны оба катета треугольника, гипотенузу находим по теореме Пифагора:
r = sqrt(3² + 5,2²) м = 6 м
Чтобы вычислить угол с осью Ox, используем либо арксинус, либо арккосинус. В данном случае удобнее использовать арккосинус:
Для всех трех задач вспомним, что радиус-вектор представляет собой гипотенузу прямоугольного треугольника, а его проекции на оси координат -- катеты этот треугольника.
1) Известна гипотенуза и один из катетов, другой катет ищем по теореме Пифагора:
y = sqrt(5²-2,5²) м = 4,33 м
2) Известна гипотенуза и один из углов треугольника. Следовательно,
xA = rA * cos α = 5 м * cos 60° = 5 м * 1/2 = 2,5 м yA = rA * sin α = 5 м * sin 60° = 5 м * sqrt(3) / 2 = 4,33 м
Складываем проекции вектора с проекциями радиус-вектора B относительно A:
xB = xA + xAB = 2,5 м + 1,83 м = 4,33 м yB = yA + yAB = 4,33 м + 0 = 4,33 м
Радиус-вектор вычисляем через теорему Пифагора:
rB = sqrt(4,33² + 4,33²) м = sqrt(150/4) = 5/2 * sqrt(6) = 6,12 м
Поскольку xB = yB, то угол между вектором rB и осью Ox составляет 45°.
3) Известны оба катета треугольника, гипотенузу находим по теореме Пифагора:
r = sqrt(3² + 5,2²) м = 6 м
Чтобы вычислить угол с осью Ox, используем либо арксинус, либо арккосинус. В данном случае удобнее использовать арккосинус:
1) Известна гипотенуза и один из катетов, другой катет ищем по теореме Пифагора:
y = sqrt(5²-2,5²) м = 4,33 м
2) Известна гипотенуза и один из углов треугольника. Следовательно,
xA = rA * cos α = 5 м * cos 60° = 5 м * 1/2 = 2,5 м
yA = rA * sin α = 5 м * sin 60° = 5 м * sqrt(3) / 2 = 4,33 м
Складываем проекции вектора с проекциями радиус-вектора B относительно A:
xB = xA + xAB = 2,5 м + 1,83 м = 4,33 м
yB = yA + yAB = 4,33 м + 0 = 4,33 м
Радиус-вектор вычисляем через теорему Пифагора:
rB = sqrt(4,33² + 4,33²) м = sqrt(150/4) = 5/2 * sqrt(6) = 6,12 м
Поскольку xB = yB, то угол между вектором rB и осью Ox составляет 45°.
3) Известны оба катета треугольника, гипотенузу находим по теореме Пифагора:
r = sqrt(3² + 5,2²) м = 6 м
Чтобы вычислить угол с осью Ox, используем либо арксинус, либо арккосинус. В данном случае удобнее использовать арккосинус:
α = arccos 3/6 = arccos 1/2 = 60°.
1) Известна гипотенуза и один из катетов, другой катет ищем по теореме Пифагора:
y = sqrt(5²-2,5²) м = 4,33 м
2) Известна гипотенуза и один из углов треугольника. Следовательно,
xA = rA * cos α = 5 м * cos 60° = 5 м * 1/2 = 2,5 м
yA = rA * sin α = 5 м * sin 60° = 5 м * sqrt(3) / 2 = 4,33 м
Складываем проекции вектора с проекциями радиус-вектора B относительно A:
xB = xA + xAB = 2,5 м + 1,83 м = 4,33 м
yB = yA + yAB = 4,33 м + 0 = 4,33 м
Радиус-вектор вычисляем через теорему Пифагора:
rB = sqrt(4,33² + 4,33²) м = sqrt(150/4) = 5/2 * sqrt(6) = 6,12 м
Поскольку xB = yB, то угол между вектором rB и осью Ox составляет 45°.
3) Известны оба катета треугольника, гипотенузу находим по теореме Пифагора:
r = sqrt(3² + 5,2²) м = 6 м
Чтобы вычислить угол с осью Ox, используем либо арксинус, либо арккосинус. В данном случае удобнее использовать арккосинус:
α = arccos 3/6 = arccos 1/2 = 60°.