Удельная теплоемкость алюминия с₁ = 920 Дж/(кг*°С) Удельная теплоемкость стали с₂ = 460 Дж/(кг*°С) Если ложки равной массы и если они остывают на одинаковое количество градусов Δt, то алюминиевая ложка выделит в 920 /460 = 2 раза больше тепла (энергии), чем стальная. С другой стороны при нагревании на одинаковое количество градусов алюминиевая ложка поглотит в 2 раза больше энергии чем стальная. Если необходимо остудить чай, то лучше в стакан опустить алюминиевую ложку, а если вы хотите пить горячий чай при ложки, то следует взять стальную ложку.
Увеличением называют отношение размера изображения к размеру предмета Г = h/H, где Н -обозначили высоту предмета. С другой стороны увеличение - отношение расстояния от линзы до изображения f к расстоянию от линзы до предмета d. Г = f/d/ И ещё одна необходимая формула- формула тонкой линзы. 1/F = 1/d +1/f, где F - тот самый фокус (фокусное расстояние - расстояние от линзы до фокуса, величина постоянная для данной линзы), который необходимо найти.
Поехали h1/H = f1/d1, h2/H = f2/d2, 1/F = 1/d1 +1/f1, 1/F = 1/d2 +1/f2 . Получили систему из 4-х уравнений с 4-мя неизвестными. Такая система вполне разрешима. Поделим 1 уравнение на 2. Получим
h1/h2 = f1d2 /(d1f2), f1 = h1d1f2/(h2d2).
Левые части 3 и 4 уравнений одинаковы(Равны) значит равны и правые части 1/d1 +1/f1 = 1/d2 +1/f2
Подставим f1 в это уравнение 1/d1 +h2d2/(h1d1f2) = 1/d2 +1/f2
Перенесём то, что содержит f2 в одну сторону уравнения, а всё остальное в другую
Дальше преобразовывать лень, поэтому подставлю числа. Т.к. ВСЕ расстояния даны в см, то в итоге получу см Даже не заморачиваюсь с переводом в СИ. ЭТО НЕ НУЖНО. Итак
Удельная теплоемкость стали с₂ = 460 Дж/(кг*°С)
Если ложки равной массы и если они остывают на одинаковое количество градусов Δt, то алюминиевая ложка выделит в 920 /460 = 2 раза больше тепла (энергии), чем стальная.
С другой стороны при нагревании на одинаковое количество градусов алюминиевая ложка поглотит в 2 раза больше энергии чем стальная.
Если необходимо остудить чай, то лучше в стакан опустить алюминиевую ложку, а если вы хотите пить горячий чай при ложки, то следует взять стальную ложку.
Поехали h1/H = f1/d1, h2/H = f2/d2, 1/F = 1/d1 +1/f1, 1/F = 1/d2 +1/f2 . Получили систему из 4-х уравнений с 4-мя неизвестными. Такая система вполне разрешима. Поделим 1 уравнение на 2. Получим
h1/h2 = f1d2 /(d1f2), f1 = h1d1f2/(h2d2).
Левые части 3 и 4 уравнений одинаковы(Равны) значит равны и правые части 1/d1 +1/f1 = 1/d2 +1/f2
Подставим f1 в это уравнение 1/d1 +h2d2/(h1d1f2) = 1/d2 +1/f2
Перенесём то, что содержит f2 в одну сторону уравнения, а всё остальное в другую
h2d2/(h1d1f2) - 1/f2 = 1/d2 - 1/d1
Вынесем 1/f2 за скобку [h2d2/(h1d1) - 1]/f2 = 1/d2 - 1/d1
1/f2 = (1/d2 - 1/d1) /[h2d2/(h1d1) - 1] Подставим в 4 уравнение
1/F = 1/d2 + (1/d2 - 1/d1) /[h2d2/(h1d1) - 1]
Дальше преобразовывать лень, поэтому подставлю числа. Т.к. ВСЕ расстояния даны в см, то в итоге получу см Даже не заморачиваюсь с переводом в СИ. ЭТО НЕ НУЖНО. Итак
1/F = 1/24 + (1/24 - 1/36)/[ 10*24/(5*36) - 1] = 1/24 + [(3-2)/72]/[240/180 - 1]
1/F =1/24 + 1/[72(4/3 - 1)] = 1/24 + 1/[72*(1/3)] = 1/24 + 1/24 = 2/24 = 1/12
1/F = 1/12
F = 12 (см)