Шарик, висящий на нити длиной l, после горизонтального толчка поднимается на высоту Н, не сходя с окружности. Может ли его скорость оказаться равной нулю: а) при H < l; б) H > l
Это графики изменения координаты тела со временем.
Возьмем 1 тело. Координата уменьшается, тело движется против оси координат. Чтобы найти скорость движения, надо взять промежуток времени и посмотреть пройденный за это время путь.
Если взять первые 10 с, то координата была 300 м, а стала 250 м.
V1=(250 - 300)/10=-50/10=-5 м/с
Возьмем 20 с. V1=(200 - 300)/20= - 5 м/с. Движение равномерное с постоянной скоростью (-5) м/с. Минус показывает, что тело движется против оси координат из точки 300 м к началу отсчета.
Второй график. Координата увеличивается, тело движется вдоль оси координат. Найдем скорость. Возьмем 20 с. За это время тело из точки 150 м перешло в точку 200 м.
V2=(200 - 150)/20=2,5 м/с.
Тело из точки 150 м движется вдоль оси координат со скоростью
2,5 м/с.
Точка пересечения показывает, что оба тела через 20 с после начала наблюдения за телами находились в точке 200 м от начала отсчета. Если у них была одинаковая координата, значит они встретились. После встречи стали удаляться друг от друга.
После того, как предмет приблизили к линзе d1 = d-1; f1= (f+x); Г1 = f1 / d1 ; f1 = Г1·d1 Рассуждая аналогично, ка было сделано выше получаем: 1/F = 1/d1 + 1/f1 или 1/F = f1*d1 / (f1+d2) 1/F = Г1·d1·d1 / (Г1·d1 + d1) = Г1·d1 / (Г1 +1) (2)
Поскольку фокус НЕ ИЗМЕНИЛСЯ, то приравниваем (1) и (2) с учетом данных по условию задачи: 2·d / (2+1) = 4·(d-1) / (4+1) d = 6 см f = 12 см
d1 = 5 f2 = 4·5 = 20 см
Было f = 12 см , стало f1 = 20 см Экран передвинули на 20-12 = 8 см
Это графики изменения координаты тела со временем.
Возьмем 1 тело. Координата уменьшается, тело движется против оси координат. Чтобы найти скорость движения, надо взять промежуток времени и посмотреть пройденный за это время путь.
Если взять первые 10 с, то координата была 300 м, а стала 250 м.
V1=(250 - 300)/10=-50/10=-5 м/с
Возьмем 20 с. V1=(200 - 300)/20= - 5 м/с. Движение равномерное с постоянной скоростью (-5) м/с. Минус показывает, что тело движется против оси координат из точки 300 м к началу отсчета.
Второй график. Координата увеличивается, тело движется вдоль оси координат. Найдем скорость. Возьмем 20 с. За это время тело из точки 150 м перешло в точку 200 м.
V2=(200 - 150)/20=2,5 м/с.
Тело из точки 150 м движется вдоль оси координат со скоростью
2,5 м/с.
Точка пересечения показывает, что оба тела через 20 с после начала наблюдения за телами находились в точке 200 м от начала отсчета. Если у них была одинаковая координата, значит они встретились. После встречи стали удаляться друг от друга.
Г= f / d, (1)
где
f - расстояние до изображения предмета
d - расстояние до предмета,
тогда f = Г·d:
По формуле тонкой линзы:
1/F = 1/d + 1/f или
1/F =f·d / (f +d)
1/F = Г·d*d / (Г·d+d) = Г·d / (Г+1) (1)
После того, как предмет приблизили к линзе d1 = d-1;
f1= (f+x); Г1 = f1 / d1 ; f1 = Г1·d1
Рассуждая аналогично, ка было сделано выше получаем:
1/F = 1/d1 + 1/f1 или
1/F = f1*d1 / (f1+d2)
1/F = Г1·d1·d1 / (Г1·d1 + d1) = Г1·d1 / (Г1 +1) (2)
Поскольку фокус НЕ ИЗМЕНИЛСЯ, то приравниваем (1) и (2) с учетом данных по условию задачи:
2·d / (2+1) = 4·(d-1) / (4+1)
d = 6 см
f = 12 см
d1 = 5
f2 = 4·5 = 20 см
Было f = 12 см , стало f1 = 20 см
Экран передвинули на 20-12 = 8 см
ответ: 8 сантиметров