Швидкість ліфта розгортається під час піднімання протягом 6с до швидкості 6 м/с, а перед зупинкою зменшує швидкість протягом 3с. Визначте вагу валізи масою 10кг що стоїть у ліфті, на кожному з етапів руху.
1. В один стакан налита холодная вода, в другой - столько же горячей воды. Одинакова ли внутренняя энергия воды в этих стаканах?
2. На столе в кухне стоят стакан и графин с водой. Одинаковы ли внутренние энергии воды в этих сосудах?
3. Как будет изменяться внутренняя энергия воды в кастрюле по мере ее подогревания?
4. Что можно сказать о внутренней энергии тела, температура которого понизилась?
5. Два медных бруска имеют одинаковую температуру, но масса одного 1 кг, а другого — 0,5 кг. Какой из двух данных брусков обладает большей внутренней энергией?
6. Продукты положили в холодильник. Как изменилась их внутренняя энергия?
КОЛИВАЛЬНИЙ РУХ. ВІЛЬНІ КОЛИВАННЯ. АМПЛІТУДА, ПЕРІОД, ЧАСТОТА. МАТЕМАТИЧНИЙ МАЯТНИК. КОЛИВАННЯ ВАНТАЖУ НА ПРУЖИНІ
МЕХАНІЧНІ КОЛИВАННЯ І ХВИЛІ
Коливання — це будь-який процес, під час якого стан тіла або фізичної системи тіл повторюється через певні інтервали часу.
Коливання — найпоширеніша форма руху в навколишньому світі та техніці. Коливаються дерева під дією вітру, поршні у двигуні автомобіля тощо. Ми можемо розмовляти і чути звуки завдяки коливанням голосових зв'язок, повітря і барабанних перетинок; коливається серце. Це все — приклади механічних коливань. Світло — це також коливання, але електромагнітні. За до електромагнітних коливань, які поширюються в просторі, можна здійснювати радіозв'язок, радіолокацію, передавати телевізійні передачі, а також лікувати деякі хвороби. Перелічити всі види коливань неможливо.
Наведені приклади механічних і електромагнітних коливань з першого погляду мають мало спільного. Проте під час їх дослідження було виявлено цікаву закономірність: різні за фізичною природою коливання описуються однаковими математичними рівняннями, що значно полегшує їх вивчення.
Коливання бувають періодичними і неперіодичними. Найцікавішими є дослідження періодичних коливань.
Періодичним називають такий процес, за якого величина, що коливається взята у будь-який момент часу, через певний інтервал часу Т матиме те саме значення.
Коливання — найпоширеніша форма руху в навколишньому світі
Різні за фізичною природою коливання описуються однаковими математичними рівняннями, що значно полегшує їх вивчення
Математичне визначення періодичної функції таке: функцію f (t) називають періодичною з періодом Т, якщо f (t+T) = f (t) за будь-яких значень змінної t.
Дослідження коливань у техніці — надзвичайно важлива справа. Деякі коливання можна виявити лише за до спеціальних датчиків. Такими є, наприклад, коливання різних споруд, корпусів і деталей машин, літальних апаратів тощо. Датчики сприймають коливання, перетворюють їх переважно на електричні сигнали, які реєструються вимірювальними приладами, електронними осцилографами та іншими пристроями.
Найпростішими є гармонічні коливання
Найпростішими механічними коливаннями є так звані гармонічні коливання. Гармонічними вважають коливаня, за яких зміни фізичних величин з часом відбуваються за законами змін синуса або косинуса. їх вивчення дає змогу досліджувати й складніші коливання, оскільки останні в багатьох випадках можна вважати такими, що складаються з певної кількості простих гармонічних коливань.
1. В один стакан налита холодная вода, в другой - столько же горячей воды. Одинакова ли внутренняя энергия воды в этих стаканах?
2. На столе в кухне стоят стакан и графин с водой. Одинаковы ли внутренние энергии воды в этих сосудах?
3. Как будет изменяться внутренняя энергия воды в кастрюле по мере ее подогревания?
4. Что можно сказать о внутренней энергии тела, температура которого понизилась?
5. Два медных бруска имеют одинаковую температуру, но масса одного 1 кг, а другого — 0,5 кг. Какой из двух данных брусков обладает большей внутренней энергией?
6. Продукты положили в холодильник. Как изменилась их внутренняя энергия?
МЕХАНІЧНІ КОЛИВАННЯ І ХВИЛІ
Коливання — це будь-який процес, під час якого стан тіла або фізичної системи тіл повторюється через певні інтервали часу.
Коливання — найпоширеніша форма руху в навколишньому світі та техніці. Коливаються дерева під дією вітру, поршні у двигуні автомобіля тощо. Ми можемо розмовляти і чути звуки завдяки коливанням голосових зв'язок, повітря і барабанних перетинок; коливається серце. Це все — приклади механічних коливань. Світло — це також коливання, але електромагнітні. За до електромагнітних коливань, які поширюються в просторі, можна здійснювати радіозв'язок, радіолокацію, передавати телевізійні передачі, а також лікувати деякі хвороби. Перелічити всі види коливань неможливо.
Наведені приклади механічних і електромагнітних коливань з першого погляду мають мало спільного. Проте під час їх дослідження було виявлено цікаву закономірність: різні за фізичною природою коливання описуються однаковими математичними рівняннями, що значно полегшує їх вивчення.
Коливання бувають періодичними і неперіодичними. Найцікавішими є дослідження періодичних коливань.
Періодичним називають такий процес, за якого величина, що коливається взята у будь-який момент часу, через певний інтервал часу Т матиме те саме значення.
Коливання — найпоширеніша форма руху в навколишньому світі
Різні за фізичною природою коливання описуються однаковими математичними рівняннями, що значно полегшує їх вивчення
Математичне визначення періодичної функції таке: функцію f (t) називають періодичною з періодом Т, якщо f (t+T) = f (t) за будь-яких значень змінної t.
Дослідження коливань у техніці — надзвичайно важлива справа. Деякі коливання можна виявити лише за до спеціальних датчиків. Такими є, наприклад, коливання різних споруд, корпусів і деталей машин, літальних апаратів тощо. Датчики сприймають коливання, перетворюють їх переважно на електричні сигнали, які реєструються вимірювальними приладами, електронними осцилографами та іншими пристроями.
Найпростішими є гармонічні коливання
Найпростішими механічними коливаннями є так звані гармонічні коливання. Гармонічними вважають коливаня, за яких зміни фізичних величин з часом відбуваються за законами змін синуса або косинуса. їх вивчення дає змогу досліджувати й складніші коливання, оскільки останні в багатьох випадках можна вважати такими, що складаються з певної кількості простих гармонічних коливань.
ГАРМОНІЧНІ КОЛИВАННЯ ТЯГАРЯ НА ПРУЖИНІ