Решение. В системе двух тел «кузнечик + соломинка» сохраняется горизонтальная проекция суммарного импульса, откуда следует, что в неподвижной системе отсчета справедливо равенство: Mvocosα = Mu, где m и М − массы кузнечика и соломинки, u — скорость соломинки. Отсюда u = mvocosα/М. Время to, которое кузнечик проводит в полете, легко найти из уравнений кинематики как для тела, подброшенного вверх со скоростью vosinα to = 2vosinα/g. За это время перемещение соломинки влево и горизонтальное перемещение кузнечика вправо примут следующие значения (см. рисунок): Sc = uto = (2vo2/g)·(m/M)·sinαcosα, Sк = votocosα = (2vo2/g)sinαcosα. Для того, чтобы кузнечик при приземлении попал точно на правый конец соломинки, эти величины должны быть связаны соотношением: Sc + Sк = l. Объединяя записанные равенства и учитывая, что m/М = β, находим величину начальной скорости кузнечика: vo = √{gl/(sin2α × (1 + β))}. Эта величина минимальна при sin2α = 1, т.е. при α = 45°. Таким образом, ответ имеет вид: vo = √{gl/(1 + β)} = 1,1 м/с.
Кажущаяся (оптическая - То) толщина стекла, слоя воды ил воздуха меньше её реальной (физической -Тф) толщины. При этом отношение Тф/То = показателю преломления стекла (воды, воздуха). Следовательно, видимая толщина воздушного зазора (Tв) будет такой же, которая задана в условии, т.е. 20 см, т.к. n воздуха = 1. А видимая толщина слоя воды будет То = Тф/nводы. Таким образом, расстояние от лица человека до его мнимого изображения в зеркале S = 2(Тв +Тф/nводы) = 2 *(20 +20*3/4) = 2*35 = 70 см. НАДЕЮСЬ
В системе двух тел «кузнечик + соломинка» сохраняется горизонтальная проекция суммарного импульса, откуда следует, что в неподвижной системе отсчета справедливо равенство:
Mvocosα = Mu,
где m и М − массы кузнечика и соломинки, u — скорость соломинки.
Отсюда
u = mvocosα/М.
Время to, которое кузнечик проводит в полете, легко найти из уравнений кинематики как для тела, подброшенного вверх со скоростью vosinα
to = 2vosinα/g.
За это время перемещение соломинки влево и горизонтальное перемещение кузнечика вправо примут следующие значения (см. рисунок):
Sc = uto = (2vo2/g)·(m/M)·sinαcosα, Sк = votocosα = (2vo2/g)sinαcosα.
Для того, чтобы кузнечик при приземлении попал точно на правый конец соломинки, эти величины должны быть связаны соотношением:
Sc + Sк = l.
Объединяя записанные равенства и учитывая, что m/М = β, находим величину начальной скорости кузнечика:
vo = √{gl/(sin2α × (1 + β))}.
Эта величина минимальна при sin2α = 1, т.е. при α = 45°.
Таким образом, ответ имеет вид:
vo = √{gl/(1 + β)} = 1,1 м/с.
НАДЕЮСЬ