При нормальном падении света на дифракционную решетку, синус угла под которым будет виден некоторый интерференционный максимум дифракционной решетки можно найти по формуле sin(a) = m *L/S; где (а) – угол, под которым виден какой-либо максимум решетки; m – порядковый номер максимума, m = 3; L – длина волны света, L = 500 нм; S – период дифракционной решетки, S = 6 мкм. При вычислении период решетки и длину волны следует применять в одной и той же размерности. Выразим и то и другое в мкм. Тогда sin(a) = 3 * 0,5/6 = 0,25. Угол (а) под которым будет виден максимум 3-го порядка (а) = arcsin0,25 = 14,4775… градусов.
d = V0 t => V0 = d / t.
по вертикали пучок движется по параболе под действием Кулоновской силы, которая равна по 2 закону Ньютона ma (пренебрегаем силой тяжести):
F = Ma,
E Q = Ma,
a = E Q / M.
при этом заряд Q пучка электронов равен Q = q * n, где q - заряд одного электрона, n - количество электронов
масса пучка электронов равна M = m * n, где m - масса одного электрона, n - число электронов
Тогда: a = E q / m.
по оси OY пучок электронов проходит расстояние, равное (начальная скорость в проекции на ось OY равна нулю, т.к. они перпендикулярны):
S = a t^2 / 2, где S - нам известно, 1 мм
S = E q t^2 / 2. Тогда
t = sqrt(2 S m / E q).
вернемся к движению относительно оси ОХ:
V0 = d / t = d / sqrt(2 S m / E q).
V0 = 5*10^-2 / sqrt(2 * 10^-3 * 9,1*10^-31 / 15*10^3 * 1,6*10^-19),
V0 = 5*10^-2 / sqrt(18,2*10^-34 / 24*10^-16),
V0 = 5*10^-2 / 8,706*10^-10,
V0 = 0,574*10^8 м/с