Пусть и ослик и автомобиль движутся равномерно (трения нет, дорога прямая и ровная) Тогда нам понадобиться только одна формула для равмномерного движения по прямой: S=v*t, где S - путь, v - скорость, t - время.
1) Пусть ослик побежал назад, тогда они встретятся в начале моста: ослик: 3*L/8=Vос*t, где Vос - искомая скорость ослика. автомобиль: x=V*t, где x - расстояние, которое проехал автомобиль до моста (мы его не знаем) Из одного уравнения выразим время и подставим в другое: 3*L/8=Vос*x/V - (уравнение 1) L - длина моста 2) Пусть теперь ослик бежит вперед: ослик: 5*L/8=Vос*t2, автомобиль: x2=V*t2, Подставляем теперь t2: 5*L/8=Vос*x2/V - (уравнение 2) 3) Вычтем из второго уравнения первое: 2*L/8=Vос*(x2-x)/V Путь автомобиля можно представить так x2=x+L, значит x2-x=L Подставляем: L/4=Vос*L/V, теперь L сокращается, окончательно получаем: Vос=V/4 ответ: Vос=V/4
Студент от начала состава вглубь него несколько десятков метров. Значит, в тот момент времени, когда он увидел в окне окончание проезжаемого моста, т.е. через секунд от начала отсчёта времени – нос электрички уже был высунут за пределы моста на эти самые несколько десятков метров. Т.е. понятно, что нос электрички достиг окончания моста МЕНЕЕ ЧЕМ ЗА секунд!
В то же время, понятно, что в самом начале отсчёта времени – студент находился вприжимку к носу электрички (внутри неё), а значит, она начала въезжать на мост как раз в начале отсчёта времени.
Теперь, рассчитаем задачу строго, по законам физики:
Согласно принципу относительности Галилея: «для того, чтобы найти вектор скорости тела относительно земли, нужно к вектору его скорости относительно транспорта прибавить вектор скорости транспорта».
В частности, в случае движения вдоль одной линии, принцип Галилея упрощается: «для того, чтобы найти проекцию скорости тела относительно земли, нужно к проекции его скорости относительно транспорта прибавить проекцию скорости транспорта».
Электричка движется вперёд со скоростью км/ч км/мин км/мин.
Студент относительно электрички движется НАЗАД (!) со скоростью км/ч км/мин.
Скорость студента относительно земли равна алгебраической сумме проекций км/мин.
Как следует из условия, в начале отсчёта времени студент находился точно на уровне начала моста, а в конце отсчёта времени – точно на уровне конца моста. Отсюда следует, что ровно за секунд минут, студент относительно земли переместился точно на длину моста. Найдём длину моста км/мин мин км м м .
Для ответа на поставленный в задаче вопрос нужно понять, в чём заключается этот вопрос. Взглянем на чертёж, приложенный к задаче. Из него легко понять, что от того момента времени, когда первый (!) вагон электрички начал въезжать на мост до того момента, как последний (!) вагон выехал с моста – всё это время электричка находилась на мосту. А значит за время, пока электричка находилась на мосту, она проехала ДВОЙНУЮ длину моста м .
Чтобы найти время в течение которого ВСЯ электричка проезжала по мосту, разделим путь, который она проделала за это время на её скорость:
сек сек сек сек .
О т в е т : полное время нахождения электрички на мосту, т.е., когда хотя бы какая-то её часть находилась на мосту, это и будет время, в течение которого электричка проехала мост. Это время сек .
Тогда нам понадобиться только одна формула для равмномерного движения по прямой:
S=v*t, где S - путь, v - скорость, t - время.
1) Пусть ослик побежал назад, тогда они встретятся в начале моста:
ослик: 3*L/8=Vос*t, где Vос - искомая скорость ослика.
автомобиль: x=V*t, где x - расстояние, которое проехал автомобиль до моста (мы его не знаем)
Из одного уравнения выразим время и подставим в другое:
3*L/8=Vос*x/V - (уравнение 1)
L - длина моста
2) Пусть теперь ослик бежит вперед:
ослик: 5*L/8=Vос*t2,
автомобиль: x2=V*t2,
Подставляем теперь t2: 5*L/8=Vос*x2/V - (уравнение 2)
3) Вычтем из второго уравнения первое:
2*L/8=Vос*(x2-x)/V
Путь автомобиля можно представить так x2=x+L, значит x2-x=L
Подставляем: L/4=Vос*L/V, теперь L сокращается,
окончательно получаем:
Vос=V/4
ответ: Vос=V/4
Студент от начала состава вглубь него несколько десятков метров. Значит, в тот момент времени, когда он увидел в окне окончание проезжаемого моста, т.е. через секунд от начала отсчёта времени – нос электрички уже был высунут за пределы моста на эти самые несколько десятков метров. Т.е. понятно, что нос электрички достиг окончания моста МЕНЕЕ ЧЕМ ЗА секунд!
В то же время, понятно, что в самом начале отсчёта времени – студент находился вприжимку к носу электрички (внутри неё), а значит, она начала въезжать на мост как раз в начале отсчёта времени.
Теперь, рассчитаем задачу строго, по законам физики:
Согласно принципу относительности Галилея: «для того, чтобы найти вектор скорости тела относительно земли, нужно к вектору его скорости относительно транспорта прибавить вектор скорости транспорта».
В частности, в случае движения вдоль одной линии, принцип Галилея упрощается: «для того, чтобы найти проекцию скорости тела относительно земли, нужно к проекции его скорости относительно транспорта прибавить проекцию скорости транспорта».
Электричка движется вперёд со скоростью км/ч км/мин км/мин.
Студент относительно электрички движется НАЗАД (!) со скоростью км/ч км/мин.
Скорость студента относительно земли равна алгебраической сумме проекций км/мин.
Как следует из условия, в начале отсчёта времени студент находился точно на уровне начала моста, а в конце отсчёта времени – точно на уровне конца моста. Отсюда следует, что ровно за секунд минут, студент относительно земли переместился точно на длину моста. Найдём длину моста км/мин мин км м м .
Для ответа на поставленный в задаче вопрос нужно понять, в чём заключается этот вопрос. Взглянем на чертёж, приложенный к задаче. Из него легко понять, что от того момента времени, когда первый (!) вагон электрички начал въезжать на мост до того момента, как последний (!) вагон выехал с моста – всё это время электричка находилась на мосту. А значит за время, пока электричка находилась на мосту, она проехала ДВОЙНУЮ длину моста м .
Чтобы найти время в течение которого ВСЯ электричка проезжала по мосту, разделим путь, который она проделала за это время на её скорость:
сек сек сек сек .
О т в е т : полное время нахождения электрички на мосту, т.е., когда хотя бы какая-то её часть находилась на мосту, это и будет время, в течение которого электричка проехала мост. Это время сек .