Движение тела, брошенного горизонтально или под углом к горизонту.
Движение тела, брошенного горизонтально или под углом к горизонту.
Это движение в плоскости, поэтому для описания движения необходимо 2 координаты.
Считаем, что движение происходит вблизи поверхности Земли, поэтому ускорение тела – ускорение свободного падения (a = g).
Так как мы пренебрегаем сопротивлением воздуха, то ускорение направлено только к поверхности Земли (g) – вдоль вертикальной оси (y), вдоль оси х движение равномерное и прямолинейное.
Движение тела, брошенного горизонтально.
Выразим проекции скорости и координаты через модули векторов.
Для того чтобы получить уравнение траектории, выразим время tиз уравнения координаты x и подставим в уравнение для y:
- между координатами квадратичная зависимость, траектория – парабола!
Движение тела, брошенного под углом к горизонту.
Порядок решения задачи аналогичен предыдущей.
Решим задачу для случая х0=0 и y0=0.
Движение тела, брошенного под углом к горизонту.
Докажем, что траекторией движения и в этом случае будет парабола. Для этого выразим координату Y через X (получим уравнение траектории):
.
Мы получили квадратичную зависимость между координатами. Значит траектория - парабола.
Найдем время полета тела от начальной точки до точки падения. В точке падения координата по вертикальной оси у=0.
Время полета:
Следовательно, для решения этой задачи необходимо решить уравнение
Оно будет иметь решение при t=0 (начало движения) и
Зная время полета, найдем максимальное расстояние, которое пролетит тело:
Дальность полета:
Из этой формулы следует, что:
- максимальная дальность полета будет наблюдаться при бросании тела (при стрельбе, например) под углом 450;
- на одно и то же расстояние можно бросить тело (с одинаковой начальной скоростью) двумя – т.н. навесная и настильная траектории.
Используя то, что парабола – это симметричная кривая, найдем максимальную высоту, которой может достичь тело.
Время, за которое тело долетит до середины, равно:
Время подъема:
Тогда:
Максимальная высота:
Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе) и равна Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе)
Угол, под которым направлен вектор скорости в любой момент времени:
Угол, под которым направлен вектор скорости в любой момент времени
нагретый медный брусок будет иметь температуру ипящей воды=100 грд С
уравнение теплового балланса будет иметь вид
с1м1(х-10)=с2м2(100-х)
где с1 и м1 - удельная теплоемкость воды и ее масса соответственно
с2 и м2 удельная теплоемкость меди и ее масса соответственно
х- искомая температура
с1=4183 Дж/кгК
с2=385 Дж/кгК
м1=0,3
м2=1
Т воды=283 грд К
Т меди=373 грд К
получим
4183*0,3(х-283)=385*1(373-х)
3,26(х-283)=373-х
3,26х-922,58=373-х
4,26х=1295,58
х=1295,58/4,26=304 грд К=31 грд С
Движение тела, брошенного горизонтально или под углом к горизонту.
Движение тела, брошенного горизонтально или под углом к горизонту.
Это движение в плоскости, поэтому для описания движения необходимо 2 координаты.
Считаем, что движение происходит вблизи поверхности Земли, поэтому ускорение тела – ускорение свободного падения (a = g).
Так как мы пренебрегаем сопротивлением воздуха, то ускорение направлено только к поверхности Земли (g) – вдоль вертикальной оси (y), вдоль оси х движение равномерное и прямолинейное.
Движение тела, брошенного горизонтально.
Выразим проекции скорости и координаты через модули векторов.
Для того чтобы получить уравнение траектории, выразим время tиз уравнения координаты x и подставим в уравнение для y:
- между координатами квадратичная зависимость, траектория – парабола!
Движение тела, брошенного под углом к горизонту.
Порядок решения задачи аналогичен предыдущей.
Решим задачу для случая х0=0 и y0=0.
Движение тела, брошенного под углом к горизонту.
Докажем, что траекторией движения и в этом случае будет парабола. Для этого выразим координату Y через X (получим уравнение траектории):
.
Мы получили квадратичную зависимость между координатами. Значит траектория - парабола.
Найдем время полета тела от начальной точки до точки падения. В точке падения координата по вертикальной оси у=0.
Время полета:
Следовательно, для решения этой задачи необходимо решить уравнение
Оно будет иметь решение при t=0 (начало движения) и
Зная время полета, найдем максимальное расстояние, которое пролетит тело:
Дальность полета:
Из этой формулы следует, что:
- максимальная дальность полета будет наблюдаться при бросании тела (при стрельбе, например) под углом 450;
- на одно и то же расстояние можно бросить тело (с одинаковой начальной скоростью) двумя – т.н. навесная и настильная траектории.
Используя то, что парабола – это симметричная кривая, найдем максимальную высоту, которой может достичь тело.
Время, за которое тело долетит до середины, равно:
Время подъема:
Тогда:
Максимальная высота:
Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе) и равна Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе)
Угол, под которым направлен вектор скорости в любой момент времени:
Угол, под которым направлен вектор скорости в любой момент времени