При температуре -8, -9 и особенно -10°С отдельные кристаллы парафина начинают уплотняться, образуя кристаллическую решетку, которая заполняет весь объем дизельного топлива. При температурах -11…-13°С, которые близки к температуре застывания топлива, кристаллы парафинов плотно укладываются в кристаллическую решетку, в результате чего дизельное топливо теряет подвижность и при таких температурах невозможно обеспечить его подачу к насосу высокого давления. Дальнейшее снижение температура топлива до -15°С приводит к уплотнению кристаллической решетки, дизельное топливо полностью застывает, запуск и эксплуатация дизелей становятся невозможном без специальных подогревателей, обеспечивающих разогрев топлива и его пропуск через фильтры грубой и тонкой очистки.
Уравнение движения первого тела x1=-v0t+0.5at^2; a=g*sin(b), b- угол наклона плоскости. для второго тела x2=v0t+0.5at^2; Скорость первого тела равна: v1=x1'=-v0+at1; В момент остановки она равна нулю: v0=at1; Отсюда t1=v0/a; Находим расстояния, пройденные телами за это время t1; x1=-v0*v0/a+0.5a*v0^2/a^2; x1=-v0^2/a+0.5v0^2/a; x1=-0.5v0^2/a; (нас интересует отношение расстояний, поэтому берём модуль числа) x1=0.5v0^2/a;
x2=v0*v0/a+0.5a*v0^2/a^2; x2=1.5v0^2/a;
x2/x1=(1.5v0^2/a)/(0.5v0^2/a); x2/x1=3. Второе тело путь в три раза больше, чем первое.
При температуре -8, -9 и особенно -10°С отдельные кристаллы парафина начинают уплотняться, образуя кристаллическую решетку, которая заполняет весь объем дизельного топлива. При температурах -11…-13°С, которые близки к температуре застывания топлива, кристаллы парафинов плотно укладываются в кристаллическую решетку, в результате чего дизельное топливо теряет подвижность и при таких температурах невозможно обеспечить его подачу к насосу высокого давления. Дальнейшее снижение температура топлива до -15°С приводит к уплотнению кристаллической решетки, дизельное топливо полностью застывает, запуск и эксплуатация дизелей становятся невозможном без специальных подогревателей, обеспечивающих разогрев топлива и его пропуск через фильтры грубой и тонкой очистки.
для второго тела x2=v0t+0.5at^2;
Скорость первого тела равна: v1=x1'=-v0+at1; В момент остановки она равна нулю: v0=at1; Отсюда t1=v0/a;
Находим расстояния, пройденные телами за это время t1;
x1=-v0*v0/a+0.5a*v0^2/a^2;
x1=-v0^2/a+0.5v0^2/a;
x1=-0.5v0^2/a; (нас интересует отношение расстояний, поэтому берём модуль числа) x1=0.5v0^2/a;
x2=v0*v0/a+0.5a*v0^2/a^2;
x2=1.5v0^2/a;
x2/x1=(1.5v0^2/a)/(0.5v0^2/a);
x2/x1=3. Второе тело путь в три раза больше, чем первое.