А) Неправда (показатель преломления среды явно зависит только от среды). Однако показатель преломления может зависеть от направления распространения света, что, если захотеть, можно сказать "зависит от угла", но здесь, скорее всего, имеется в виду не это. б) Правда. (если опечатка дольше = больше) в) Неправда, сила обратно пропорциональна квадрату расстояния. А вот энергия как раз обратно пропорциональна расстоянию. г) Правда (и как раз, так же как и гравитационные, обратно пропорционально квадрату расстояния)
С проецированием силы ( на оси Оx и Оу ) действующие на тела в начале его движения на горе высоты ( h )
Предположим то что вектор ускорения ( а ) сонаправлен со скоростью движения тела ( если мы предположили правильно , то ( а ) получится со знаком + , если неправильно то - )
Ох : ma = mgsinα - Fтр. (1)
Оу : 0 = N - mgcosα (2)
из уравнения (2) получим
N = mgcosα (3)
( мы знаем то что Fтр. = μN )
из уравнений (1) и (3) получим
ma = mgsinα - μmgcosα
упростим
а = g ( sinα - μcosα )
( cos45° = sin45° = √(2)/2 ≈ 0,7 )
a = 10 * ( 0,7 - 0,1 * 0,7 ) ≈ 6 м/с²
из геометрии рисунка можем определить что
sinα = h / s
s = h / sinα
s = 55 / 0,7 ≈ 78,6 м
из кинематики мы знаем что
s = ( v² - v0² ) / ( 2a )
так как начальная скорость тела ( v0 ) равна 0 м/с , тогда
s = v² / ( 2a )
где v - конечная скорость тела у подножья горы высотой h
v = √( 2as )
v = √ ( 2 * 6 * 78,6 ) ≈ 31 м/с
Теперь также можем спроецировать силы действующие на оси Ох и Oy на горе высоты ( h(1) )
Опять также предположим то что вектор ускорения ( а(1) ) сонаправлен со скоростью движения тела в начале его движения по горе высотой ( h(1) )
Отсюда получим
Ox : ma(1) = - mgsinβ - Fтр.(1)
Оу : 0 = N(1) - mgcosβ
отсюда
N(1) = mgcosβ
ma(1) = - mgsinβ - μmgcosβ
упростим
a(1) = g ( - sinβ - μcosβ )
( cos30° = √(3)/2 ≈ 0,87 ; sin30° = 0,5 )
a(1) = 10 * ( - 0,5 - 0,1 * 0,87 ) ≈ - 5,87 м/с²
L = ( v(1)² - v² ) / ( 2a(1) )
где v(1) - конечная скорость тела на горе высотой ( h(1) ) равная 0 м/с , тогда
б) Правда. (если опечатка дольше = больше)
в) Неправда, сила обратно пропорциональна квадрату расстояния. А вот энергия как раз обратно пропорциональна расстоянию.
г) Правда (и как раз, так же как и гравитационные, обратно пропорционально квадрату расстояния)
Объяснение:
Дано :
h = 55 м
α = 45°
β = 30°
μ = 0,1
g = 10 м/с²
-----------------------
h(1) - ?
С проецированием силы ( на оси Оx и Оу ) действующие на тела в начале его движения на горе высоты ( h )
Предположим то что вектор ускорения ( а ) сонаправлен со скоростью движения тела ( если мы предположили правильно , то ( а ) получится со знаком + , если неправильно то - )
Ох : ma = mgsinα - Fтр. (1)
Оу : 0 = N - mgcosα (2)
из уравнения (2) получим
N = mgcosα (3)
( мы знаем то что Fтр. = μN )
из уравнений (1) и (3) получим
ma = mgsinα - μmgcosα
упростим
а = g ( sinα - μcosα )
( cos45° = sin45° = √(2)/2 ≈ 0,7 )
a = 10 * ( 0,7 - 0,1 * 0,7 ) ≈ 6 м/с²
из геометрии рисунка можем определить что
sinα = h / s
s = h / sinα
s = 55 / 0,7 ≈ 78,6 м
из кинематики мы знаем что
s = ( v² - v0² ) / ( 2a )
так как начальная скорость тела ( v0 ) равна 0 м/с , тогда
s = v² / ( 2a )
где v - конечная скорость тела у подножья горы высотой h
v = √( 2as )
v = √ ( 2 * 6 * 78,6 ) ≈ 31 м/с
Теперь также можем спроецировать силы действующие на оси Ох и Oy на горе высоты ( h(1) )
Опять также предположим то что вектор ускорения ( а(1) ) сонаправлен со скоростью движения тела в начале его движения по горе высотой ( h(1) )
Отсюда получим
Ox : ma(1) = - mgsinβ - Fтр.(1)
Оу : 0 = N(1) - mgcosβ
отсюда
N(1) = mgcosβ
ma(1) = - mgsinβ - μmgcosβ
упростим
a(1) = g ( - sinβ - μcosβ )
( cos30° = √(3)/2 ≈ 0,87 ; sin30° = 0,5 )
a(1) = 10 * ( - 0,5 - 0,1 * 0,87 ) ≈ - 5,87 м/с²
L = ( v(1)² - v² ) / ( 2a(1) )
где v(1) - конечная скорость тела на горе высотой ( h(1) ) равная 0 м/с , тогда
L = -v² / ( 2a(1) )
L = - ( 31 )² / ( 2 * ( - 5,87 ) ≈ 82 м
sinβ = h(1) / L
h(1) = Lsinβ
h(1) = 82 * 0,5 = 41 м