Сопротивление измерительной головки амперметра Ra=670, ее предел I0max=250мкА. Изобразите схему амперметра на основе данной головки, позволяющего измерить токи до 40 мА
Согласно закону Стефана-Больцмана повышение температуры в 1.5 раза (9000К/6000К) приведет к повышению светимости тела всего в 1.5^4 = 5 раз. Так что Столь гигантская разница в светимости Денеба и Солнца объяснятся разным размером, точнее площадью - которая пропорциональна квадрату диаметра.
Сначала изложим общий ход решения. Нужно найти плотность полученного сплава ρ₁ и сравнить её со средней плотностью кубика ρ₂. Средняя плотность будет равна массе кубика деленной на его объем. Если эта средня плотность окажется меньше плотности сплава, значит пустоты есть.
Найдем массу полученного кубика. Для этого сложим массы исходных компонентов.
Далее находим объем
А затем выражаем среднюю плотность [г/см³] Теперь необходимо найти плотность сплава. Для этого находим объемы его компонентов. И считаем, что объем сплава будет равен их сумме. [см³] [см³] Суммарный объем: [см³] А плотность сплава соответственно: [г/см³]
Значит пустоты есть. И объем этой пустоты равен разности объема кубика и суммарного объема сплава [см³]
Объяснение:
Согласно закону Стефана-Больцмана повышение температуры в 1.5 раза (9000К/6000К) приведет к повышению светимости тела всего в 1.5^4 = 5 раз. Так что Столь гигантская разница в светимости Денеба и Солнца объяснятся разным размером, точнее площадью - которая пропорциональна квадрату диаметра.
E/e = (T^4/t^4)*D^2/d^2
где
E и e - светимость Денеба и Солнца
T и t - температура Денеба и Солнца
D и d - диаметры Денеба и Солнца
или
D/d = корень((E/e)*(е^4/Е^4)) = корень(6000/5) = 108
То есть Ригель примерно в 100 раз больше Солнца
Кстати, согласно Вики
Ригель имеет
светимость 126000 светимостей Солнца
температуру 12300К
диаметр 75 диаметров Солнца
Нужно найти плотность полученного сплава ρ₁ и сравнить её со средней плотностью кубика ρ₂. Средняя плотность будет равна массе кубика деленной на его объем.
Если эта средня плотность окажется меньше плотности сплава, значит пустоты есть.
Найдем массу полученного кубика. Для этого сложим массы исходных компонентов.
Далее находим объем
А затем выражаем среднюю плотность
[г/см³]
Теперь необходимо найти плотность сплава. Для этого находим объемы его компонентов. И считаем, что объем сплава будет равен
их сумме.
[см³]
[см³]
Суммарный объем:
[см³]
А плотность сплава соответственно:
[г/см³]
Значит пустоты есть.
И объем этой пустоты равен разности объема кубика и суммарного объема сплава
[см³]