Если отводим шарик на высоту h, то относительно положения равновесия он обладает потенциальной энергией в поле тяжести U = m g h В нижней точке его кинетическая энергия максимальна, и равна: m v^2 / 2 = m g h по закону сохранения энергии. В системе отсчета нити на шарик действует центробежная сила инерции. В нижней точке она суммируется с силой тяжести и компенсируется силой натяжения нити (пока она выдерживает): T = m g + m v^2 / L = m g + 2 m g h / L = m g (1 + 2 h/L) Нашли максимальную силу натяжение за все движение. Приравняем максимальному допустимому натяжению для нити: Tm = m g (1 + 2 h /L) От сюда выражаем h, подставляем числа и получаем ответ. Удачи :)
Рассмотрим критическое условие равновесия рычага, когда сила давления пара уравновешивается весом груза.
Для того, чтобы рычаг находится в равновесии, нужно чтобы сумма моментов обоих сил относительно закрепленной оси О была равна нулю:
M₁+M₂=0
OA*F₁ - OB*F₂=0
OA*F₁ = OB*F₂
OB/OA = F₁/F₂
По рисунку видим, что OB/OA ~ 5, следовательно F₂ = F₁/5
Найдём F₁:
F₁ = p*S = 12 * p(атм) * S, где p(атм) - нормальное атмосферное давление, S - площадь сечения клапана
Отсюда, F₂ = F₁/5 = 2,4 * p(атм) * S
Нам же нужно найти массу груза:
F₂ = m * g -> m = F₂/g = 2,4 * p(атм) * S / g = 2,4 * 101300 H/м^2 * 3*10^-4 м^2 / 10 H/кг ~ 7,3 кг
ответ: 7,3 кг
Объяснение:
держи
В нижней точке его кинетическая энергия максимальна, и равна:
m v^2 / 2 = m g h по закону сохранения энергии.
В системе отсчета нити на шарик действует центробежная сила инерции. В нижней точке она суммируется с силой тяжести и компенсируется силой натяжения нити (пока она выдерживает):
T = m g + m v^2 / L = m g + 2 m g h / L = m g (1 + 2 h/L)
Нашли максимальную силу натяжение за все движение.
Приравняем максимальному допустимому натяжению для нити:
Tm = m g (1 + 2 h /L)
От сюда выражаем h, подставляем числа и получаем ответ. Удачи :)