Сравните модуль силы натяжения нити математического маятника в крайнем положении с модулем силы натяжения нити конического маятника. Длины нитей, массы грузов и углы отклонения маятников одинаковы.
Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?
На трубу действует 3 силы: F1 - реакция опоры со стороны 1 человека, направлена вверх F2 - реакция опоры со стороны 2 человека, направлена вверх gm - сила тяжести, направлена вниз Задача на условие равновесия, их два 1) равнодействующая всех сил приложенных к телу должна равняться нулю, т. е. F1 + F2 = gm (1) 2) алгебраическая сумма моментов си относительно выбранной оси вращения также должна равняться нулю Выберем ось вращения совпадающую с точкой приложения силы F1, тогда имеем 0,25*gm = F2*1,5 (2) Делим первое уравнение на второе: 1/0,25 = F1/(F2*1,5) + F2/(F2*1,5) 4 = F1/(F2*1,5) + 1/1,5 4 = 2/3 * F1/F2 + 2/3 4 - 2/3 = 2/3 * F1/F2 F1/F2 = 9/3 : 2/3 = 4,5
Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?
F1 - реакция опоры со стороны 1 человека, направлена вверх
F2 - реакция опоры со стороны 2 человека, направлена вверх
gm - сила тяжести, направлена вниз
Задача на условие равновесия, их два
1) равнодействующая всех сил приложенных к телу должна равняться нулю, т. е. F1 + F2 = gm (1)
2) алгебраическая сумма моментов си относительно выбранной оси вращения также должна равняться нулю
Выберем ось вращения совпадающую с точкой приложения силы F1, тогда имеем 0,25*gm = F2*1,5 (2)
Делим первое уравнение на второе:
1/0,25 = F1/(F2*1,5) + F2/(F2*1,5)
4 = F1/(F2*1,5) + 1/1,5
4 = 2/3 * F1/F2 + 2/3
4 - 2/3 = 2/3 * F1/F2
F1/F2 = 9/3 : 2/3 = 4,5