Тут без чертежа никак: рисуем наклонную плоскость, на ней тело и расставляем силы: сила тяги вдоль наклонной плоскости вверх, сила трения вдоль плоскости, но вниз, сила тяжести приложена к центру масс тела и направлена ВЕРТИКАЛЬНО вниз, сила реакции опоры приложена к центру масс тела но ВДОЛЬ ПЕРПЕНДИКУЛЯРА К НАКЛОННОЙ ПЛОСКОСТИ. ось ОХ направляем вдоль наклонной плоскости вверх, ось ОУ вдоль вектора силы реакции опоры вверх, угол α=30 угол у основания наклонной плоскости. Теперь нам надо записать 2 закон Ньютона в векторном виде: → → → → → → Fтяг+Fтр+mg+N=ma, теперь нам надо найти проекции этих сил на координатные оси ОХ: Fтяг-Fтр - mg sinα=ma (сила трения имеет отрицательную проекцию, тк. она направлена "против" оси ОХ, mg отрицательна т.к. идем от начала проекции к концу против направления оси, а если опустить перпендикуляр из конца вектора на ОХ то получим, что угол 30 будет лежать напротив проекции, т.е сам вектор при этом будет равен mg sinα) Теперь аналогично находим проекции всех векторов на ОУ: 0+0-mg cosα+N=0 отсюда находим, что N=mg cosα, вспоминаем, что Fтр=μN=μ mg cosα, осталось все собрать в кучу, получаем: Fтяг- μ mg cosα - mg sinα=ma отсюда a=(Fтяг -μ mg cosα -mg sinα)/m=(7000-0,1*1000*10*√3/2 - 1000*10*1/2)/1000=(6150-5000)/1000=1150/1000=1,15 м/с.кв.
Задание. Исследовать скатывание цилиндров и шара по наклонной плоскости.
Примечание: если цилиндр или шар скатывается по наклонной плоскости, расположенной под небольшим углом к горизонту, то скатывание происходит без проскальзывания. Если угол наклона плоскости превысит некоторое предельное значение, то скатывание будет происходить с проскальзыванием.
При выполнении задания необходимо определить тот предельный угол, при котором скатывание тел начнет происходить с проскальзыванием. По результатам исследования составить отчет, в котором отразить методику исследования, предоставить таблицу результатов наблюдений и дать объяснение, почему при угле, превышающем некоторое значение, скатывание тел происходит с проскальзыванием.
Кроме того, в задачу входит определение момента инерции цилиндров и шара no результатам наблюдений скатывания их с наклонной плоскости.
Краткая теория
Положим, цилиндр катится по наклонной плоскости без скольжения. На цилиндр действуют внешние силы: сила тяжести , сила трения , и сила реакции со стороны плоскости . Движение рассматриваем как поступательное со скоростью, равной скорости центра масс, и вращательное относительно оси, проходящей через центр масс.
Уравнение для движения центра масс шара (цилиндра)
или в скалярном виде в проекциях:
на ось OX: .
на ось ОУ:
Уравнение моментов относительно оси
.
При отсутствии проскальзывания
.
Найдем ускорение, которое приобретает цилиндр под действием указанных сил. Оно может быть найдено путем использования выражения для кинетической энергии катящегося тела
, (1)
где - масса шара (цилиндра), - скорость поступательного движения центра масс, - момент инерции шара, относительно оси вращения, - угловая скорость вращения, относительно оси вращения.
Изменение кинетической энергии тела равно работе внешних сил, действующих на тело. Элементарная работа силы трения и реакции, плоскости равна нулю, т.к. линии действия их проходят через мгновенную ось вращения ( ). Следовательно, изменение кинетической энергии тела происходит только за счёт работы силы тяжести
(2)
или проинтегрировав выражение (2) в пределах от до , получим,
где - кинетическая энергия тела в конце наклонной плоскости, - начальная энергия (кинетическая) тела, ; - длина наклонной плоскости, тогда энергия тела
, (3)
откуда
. (4)
Поступательное движение тела по наклонной плоскости происходит равноускоренно, поэтому можно записать
, (5)
где - конечная скорость центра масс в конце наклонной плоскости, - начальная скорость, она равна нулю, поэтому
, (6)
так как
(7)
Выражение (4) с учетом (6) и (7) может быть записано
, (8)
где – ускорение поступательного движения тела при скатывании по наклонной плоскости.
Так как это равноускоренное движение с начальной скоростью , то можно записать или , подставляя значение а в (8) окончательно получим
, (9)
где - время скатывания тела по наклонной плоскости, - радиус шара (цилиндра), - масса шара (цилиндра), - угол наклона плоскости к горизонту, - длина наклонной плоскости.
Измерив указанные выше величины, можно вычислить момент инерции скатывающегося цилиндра. Он может быть сплошным, пустотелым, с канавками на его образующей поверхности и т.д. Формула (9): справедлива и для цилиндров и для шара.
Эксперимент с каждым из тел проводить не менее трех раз. Результаты наблюдений и вычислений занести в таблицу 1.
Таблица 1
№ п/п Форма скатывающегося тела Масса , кг Радиус , м Длина наклонной плоскости (м) Время скатывания, с Момент инерции , кг·м2
Теперь нам надо записать 2 закон Ньютона в векторном виде: →
→ → → → →
Fтяг+Fтр+mg+N=ma, теперь нам надо найти проекции этих сил на координатные оси ОХ: Fтяг-Fтр - mg sinα=ma (сила трения имеет отрицательную проекцию, тк. она направлена "против" оси ОХ, mg отрицательна т.к. идем от начала проекции к концу против направления оси, а если опустить перпендикуляр из конца вектора на ОХ то получим, что угол 30 будет лежать напротив проекции, т.е сам вектор при этом будет равен mg sinα)
Теперь аналогично находим проекции всех векторов на ОУ: 0+0-mg cosα+N=0 отсюда находим, что N=mg cosα, вспоминаем, что Fтр=μN=μ mg cosα, осталось все собрать в кучу, получаем: Fтяг- μ mg cosα - mg sinα=ma отсюда a=(Fтяг -μ mg cosα -mg sinα)/m=(7000-0,1*1000*10*√3/2 - 1000*10*1/2)/1000=(6150-5000)/1000=1150/1000=1,15 м/с.кв.
Объяснение:
Задание. Исследовать скатывание цилиндров и шара по наклонной плоскости.
Примечание: если цилиндр или шар скатывается по наклонной плоскости, расположенной под небольшим углом к горизонту, то скатывание происходит без проскальзывания. Если угол наклона плоскости превысит некоторое предельное значение, то скатывание будет происходить с проскальзыванием.
При выполнении задания необходимо определить тот предельный угол, при котором скатывание тел начнет происходить с проскальзыванием. По результатам исследования составить отчет, в котором отразить методику исследования, предоставить таблицу результатов наблюдений и дать объяснение, почему при угле, превышающем некоторое значение, скатывание тел происходит с проскальзыванием.
Кроме того, в задачу входит определение момента инерции цилиндров и шара no результатам наблюдений скатывания их с наклонной плоскости.
Краткая теория
Положим, цилиндр катится по наклонной плоскости без скольжения. На цилиндр действуют внешние силы: сила тяжести , сила трения , и сила реакции со стороны плоскости . Движение рассматриваем как поступательное со скоростью, равной скорости центра масс, и вращательное относительно оси, проходящей через центр масс.
Уравнение для движения центра масс шара (цилиндра)
или в скалярном виде в проекциях:
на ось OX: .
на ось ОУ:
Уравнение моментов относительно оси
.
При отсутствии проскальзывания
.
Найдем ускорение, которое приобретает цилиндр под действием указанных сил. Оно может быть найдено путем использования выражения для кинетической энергии катящегося тела
, (1)
где - масса шара (цилиндра), - скорость поступательного движения центра масс, - момент инерции шара, относительно оси вращения, - угловая скорость вращения, относительно оси вращения.
Изменение кинетической энергии тела равно работе внешних сил, действующих на тело. Элементарная работа силы трения и реакции, плоскости равна нулю, т.к. линии действия их проходят через мгновенную ось вращения ( ). Следовательно, изменение кинетической энергии тела происходит только за счёт работы силы тяжести
(2)
или проинтегрировав выражение (2) в пределах от до , получим,
где - кинетическая энергия тела в конце наклонной плоскости, - начальная энергия (кинетическая) тела, ; - длина наклонной плоскости, тогда энергия тела
, (3)
откуда
. (4)
Поступательное движение тела по наклонной плоскости происходит равноускоренно, поэтому можно записать
, (5)
где - конечная скорость центра масс в конце наклонной плоскости, - начальная скорость, она равна нулю, поэтому
, (6)
так как
(7)
Выражение (4) с учетом (6) и (7) может быть записано
, (8)
где – ускорение поступательного движения тела при скатывании по наклонной плоскости.
Так как это равноускоренное движение с начальной скоростью , то можно записать или , подставляя значение а в (8) окончательно получим
, (9)
где - время скатывания тела по наклонной плоскости, - радиус шара (цилиндра), - масса шара (цилиндра), - угол наклона плоскости к горизонту, - длина наклонной плоскости.
Измерив указанные выше величины, можно вычислить момент инерции скатывающегося цилиндра. Он может быть сплошным, пустотелым, с канавками на его образующей поверхности и т.д. Формула (9): справедлива и для цилиндров и для шара.
Эксперимент с каждым из тел проводить не менее трех раз. Результаты наблюдений и вычислений занести в таблицу 1.
Таблица 1
№ п/п Форма скатывающегося тела Масса , кг Радиус , м Длина наклонной плоскости (м) Время скатывания, с Момент инерции , кг·м2