Объяснение:
Ускорение свободного падения на поверхности планеты найдем по
формуле
-
,
где 6,67 ∙ 10 Н·м2
/кг2
– универсальная гравитационная
постоянная, M – масса планеты, R – радиус планеты.
Радиус планеты задан, произведение можно выразить из
формулы для первой космической скорости:
где – радиус орбиты спутника; отсюда искомое произведение –
.
Подставим в выражение для вычисления -
:
Расчет позволяет получить значение ускорения свободного падения на
поверхности планеты:
12 ∙ 10
∙ 2 ∙ 10
20 м/с
дано:
\displaystyle v=0,040 м3
найти:
\displaystyle {{f}_{a}} — ?
решение
думаем: силу архимеда можно найти исходя из определения (1).
\displaystyle {{f}_{a}}={{\rho }_{zh}}gv (1)
решаем: объём задан, осталось вспомнить константы:
\displaystyle {{\rho }_{zh}}=1000 кг/м\displaystyle ^{3} — плотность воды (табличные данные),
\displaystyle 10 м/с\displaystyle ^{2} — ускорение свободного падения.
считаем:
\displaystyle {{f}_{a}}=1000*10*0,040=400 н
ответ: \displaystyle {{f}_{a}}=400 н.
Объяснение:
Ускорение свободного падения на поверхности планеты найдем по
формуле
-
,
где 6,67 ∙ 10 Н·м2
/кг2
– универсальная гравитационная
постоянная, M – масса планеты, R – радиус планеты.
Радиус планеты задан, произведение можно выразить из
формулы для первой космической скорости:
,
где – радиус орбиты спутника; отсюда искомое произведение –
.
Подставим в выражение для вычисления -
:
-
.
Расчет позволяет получить значение ускорения свободного падения на
поверхности планеты:
-
12 ∙ 10
∙ 2 ∙ 10
12 ∙ 10
20 м/с
.
дано:
\displaystyle v=0,040 м3
найти:
\displaystyle {{f}_{a}} — ?
решение
думаем: силу архимеда можно найти исходя из определения (1).
\displaystyle {{f}_{a}}={{\rho }_{zh}}gv (1)
решаем: объём задан, осталось вспомнить константы:
\displaystyle {{\rho }_{zh}}=1000 кг/м\displaystyle ^{3} — плотность воды (табличные данные),
\displaystyle 10 м/с\displaystyle ^{2} — ускорение свободного падения.
считаем:
\displaystyle {{f}_{a}}=1000*10*0,040=400 н
ответ: \displaystyle {{f}_{a}}=400 н.