○ однако это условие в данной задаче не выполняется, так как кинетическая энергия шарика идет на его нагревание и плавление с КПД 80% по условию. запишем это:
Q = 0.8 ΔEk или, если допустить, что начальная скорость шарика - ноль, то Q = 0.8 Ek
• количество теплоты Q пойдет на нагрев и плавление (отметим, что температура плавления свинца 327.5 °С):
Q = c m (327.5 - 127) + λ m
• кинетическая энергия шарика равна
Ek = (m v²)/2
○ из условия Q = 0.8 Ek получаем, что
v = √(2.5 (λ + 200.5 c)).
• удельная теплота плавления свинца равна λ = 25 кДж/кг • удельная теплоемкость свинца равна c = 130 Дж/(кг °С)
Дано: L=350 м, S=350 м, Vo=17 км/ч=4,72 м/с, V=73 км/ч=20,28 м/с Найти t1. решение: Из условия - движение равноускоренное, длина моста равна длине поезда,следовательно время нахождения на мосту пассажира последнего вагона будет составлять половину от времени прохождения поездом всего моста t1=t /2. Чтобы пройти весь мост поезд должен пройти путь равный 2L. Найдем ускорение поезда, по определению а=( v-vo) /t. А путь 2L=Vot+at^2/2;подставив ускорение получим: 2L=Vot+(v-vo) t /2; Все время движения t=4L/(vo+v)=4*350/(4,72+20,28)=56 с. искомое время t1=t /2=56/2=28 c
○ однако это условие в данной задаче не выполняется, так как кинетическая энергия шарика идет на его нагревание и плавление с КПД 80% по условию. запишем это:
Q = 0.8 ΔEk или, если допустить, что начальная скорость шарика - ноль, то Q = 0.8 Ek
• количество теплоты Q пойдет на нагрев и плавление (отметим, что температура плавления свинца 327.5 °С):
Q = c m (327.5 - 127) + λ m
• кинетическая энергия шарика равна
Ek = (m v²)/2
○ из условия Q = 0.8 Ek получаем, что
v = √(2.5 (λ + 200.5 c)).
• удельная теплота плавления свинца равна λ = 25 кДж/кг
• удельная теплоемкость свинца равна c = 130 Дж/(кг °С)
v = sqrt(2.5*(25*10^(3)+200.5*130)) ≈ 357.3 м/c