Вероятность того, что тепловые нейтроны будут поглощены ураном обозначим θ. Эту величину называют коэффициентом использования тепловых нейтронов. Тогда число тепловых нейтронов, поглощенных ураном, будет равно n εφθ .
На каждое поглощение ураном теплового нейтрона образуется η новых быстрых нейтронов. Следовательно, в конце рассматриваемого цикла количество быстрых нейтронов, образовавшихся от деления, оказалось равным n εφθη .
Коэффициент размножения нейтронов в бесконечной среде, таким образом, равен
Равенство (3.4) называют формулой четырех сомножителей. Оно раскрывает зависимость К∞ от различных факторов, обусловливающих развитие цепной ядерной реакции в смеси урана и замедлителя.
Газопоршневые установки 50-1590 кВт ₽
Газопоршневая установка В реальной размножающейся среде, имеющей конечные размеры, неизбежна утечка нейтронов, которая не учитывалась при вводе формулы для K∞. Коэффициент размножения нейтронов для среды конечных размеров называют эффективным коэффициентом размножения Kэф; при чем он по-прежнему определяется как отношение числа нейтронов данного поколения к соотвествующему числу нейтронов предыдущего поколения. Если через Рз и Рд обозначить вероятности избежания утечки нейтронов в процессе замедления и диффузии соответственно, то можно записать
Kэф= K∞ Рз Рд. (3.5)
Очевидно, что условием поддержания цепной реакции в среде конечных размеров будет соотношение Кэф ≥ 1. Произведение РзРд всегда меньше единицы, поэтому для осуществления самоподдерживающейся цепной реакции в системе конечных размеров необходимо, чтобы К∞ был всегда больше единицы.
Итак, что у нас происходит. Кусок льда, оказавшись в воде, сначала нагревается до температуры плавления, затем тает. При этом вода в сосуде охлаждается. Коль лед не весь растаял, есть основания полагать, что процесс завершился при температуре 0° С. Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁: (1) Тут: с₁ - удельная теплоемкость воды 4200 Дж/(кг·К) m₁ - масса воды 1 кг (1л - 1кг) T₀ - начальная температура воды 10°С T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ : (2) Где: с₂ - удельная теплоемкость льда 2060 Дж/(кг·К) m₂ - начальная масса льда T₂ - начальная температура льда -20°С T₁ - конечная температура воды и льда 0°С m₃ - масса растаявшего льда. λ - удельная теплота плавления льда 334*10³ Дж/кг При этом: кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂ (4) Теперь из 4 выражаем m₂:
На каждое поглощение ураном теплового нейтрона образуется η новых быстрых нейтронов. Следовательно, в конце рассматриваемого цикла количество быстрых нейтронов, образовавшихся от деления, оказалось равным n εφθη .
Коэффициент размножения нейтронов в бесконечной среде, таким образом, равен
Равенство (3.4) называют формулой четырех сомножителей. Оно раскрывает зависимость К∞ от различных факторов, обусловливающих развитие цепной ядерной реакции в смеси урана и замедлителя.
Газопоршневые установки 50-1590 кВт
₽
Газопоршневая установка
В реальной размножающейся среде, имеющей конечные размеры, неизбежна утечка нейтронов, которая не учитывалась при вводе формулы для K∞. Коэффициент размножения нейтронов для среды конечных размеров называют эффективным коэффициентом размножения Kэф; при чем он по-прежнему определяется как отношение числа нейтронов данного поколения к соотвествующему числу нейтронов предыдущего поколения. Если через Рз и Рд обозначить вероятности избежания утечки нейтронов в процессе замедления и диффузии соответственно, то можно записать
Kэф= K∞ Рз Рд. (3.5)
Очевидно, что условием поддержания цепной реакции в среде конечных размеров будет соотношение Кэф ≥ 1. Произведение РзРд всегда меньше единицы, поэтому для осуществления самоподдерживающейся цепной реакции в системе конечных размеров необходимо, чтобы К∞ был всегда больше единицы.
Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁:
(1)
Тут:
с₁ - удельная теплоемкость воды 4200 Дж/(кг·К)
m₁ - масса воды 1 кг (1л - 1кг)
T₀ - начальная температура воды 10°С
T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ :
(2)
Где:
с₂ - удельная теплоемкость льда 2060 Дж/(кг·К)
m₂ - начальная масса льда
T₂ - начальная температура льда -20°С
T₁ - конечная температура воды и льда 0°С
m₃ - масса растаявшего льда.
λ - удельная теплота плавления льда 334*10³ Дж/кг
При этом:
кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂
(4)
Теперь из 4 выражаем m₂:
(5)
Подставляя в (5) числовые значения, получаем:
кг
ответ: Исходная масса льда 0,201 кг=201 г.