Равномерное движение по окружности характеризуют периодом и частотой обращения.
Период обращения - это время, за которое совершается один оборот.
Если, например, за время t = 4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой Т и определяется по формуле. Итак, чтобы найти период обращения, надо время, за которое совершено п оборотов, разделить на число оборотов.
Другой характеристикой равномерного движения по окружности является частота обращения.
Частота обращения - это число оборотов, совершаемых за 1 с. Если, например, за время t = 2 с тело совершило n = 10 оборотов, то легко сообразить, что за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой V(читается: ню) и определяется по формуле Итак, чтобы найти частоту обращения, надо число оборотов разделить на время, в течение которого они произошли.
За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени). Раньше эту единицу называли "оборот в секунду", но теперь это название считается устаревшим.
Сравнивая формулы (6.1) и (6.2), можно заметить, что период и частота - величины взаимно обратные. Поэтому  Формулы (6.1) и (6.3) позволяют найти период обращения Т, если известны число n и время оборотов t или частота обращения V. Однако его можно найти и в том случае, когда ни одна из этих величин неизвестна. Вместо них достаточно знать скорость тела V и радиус окружности r, по которой оно движется.
Для вывода новой формулы вспомним, что период обращения - это время, за которое тело совершает один оборот, т. е. проходит путь, равный длине окружности (lокр = 2 Пr, где П≈3,14- число "пи", известное из курса математики). Но мы знаем, что при равномерном движении время находится делением пройденного пути на скорость движения. Таким образом, Итак, чтобы найти период обращения тела, надо длину окружности, по которой оно движется, разделить на скорость его движения.
1)Объем тела, погр. в жидкость, равен объему вытесненной этим телом жидкости. Vт=0,005м^3 FА=pж*g*v=710*10*0,005=35,5Н ответ:35,5Н 2)ответ может быть получен двумя я разберу каждый. 1)Тело в обоих случаях плавает. Если тело плавает в жидкости, то FА=mg, поэтому и в воде и в киросине FА будут одинаковыми. 2)Тело НЕ плавает, а тонет или всплывает. pв>pк, значит по формуле FА=pж*g*v можно сказать, что чем больше плотность жидкости, тем сила Архимеда больше. ответ:1)Одинаковы 2)Больше в воде . В четвертой задаче нужно конкретное условие. Если под этот брусок вода НЕ заливается, то FА НЕ ДЕЙСТВУЕТ! Вода не выталкивает тело потому что она даже не заливается под него. Я решил эту задачу когда FA действует, ответ 1900Н. Если нужно будет решить обращайся
Период обращения - это время, за которое совершается один оборот.
Если, например, за время t = 4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой Т и определяется по формуле.
Итак, чтобы найти период обращения, надо время, за которое совершено п оборотов, разделить на число оборотов.
Другой характеристикой равномерного движения по окружности является частота обращения.
Частота обращения - это число оборотов, совершаемых за 1 с. Если, например, за время t = 2 с тело совершило n = 10 оборотов, то легко сообразить, что за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой V(читается: ню) и определяется по формуле
Итак, чтобы найти частоту обращения, надо число оборотов разделить на время, в течение которого они произошли.
За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени). Раньше эту единицу называли "оборот в секунду", но теперь это название считается устаревшим.
Сравнивая формулы (6.1) и (6.2), можно заметить, что период и частота - величины взаимно обратные. Поэтому

Формулы (6.1) и (6.3) позволяют найти период обращения Т, если известны число n и время оборотов t или частота обращения V. Однако его можно найти и в том случае, когда ни одна из этих величин неизвестна. Вместо них достаточно знать скорость тела V и радиус окружности r, по которой оно движется.
Для вывода новой формулы вспомним, что период обращения - это время, за которое тело совершает один оборот, т. е. проходит путь, равный длине окружности (lокр = 2 Пr, где П≈3,14- число "пи", известное из курса математики). Но мы знаем, что при равномерном движении время находится делением пройденного пути на скорость движения. Таким образом,
Итак, чтобы найти период обращения тела, надо длину окружности, по которой оно движется, разделить на скорость его движения.
FА=pж*g*v=710*10*0,005=35,5Н ответ:35,5Н
2)ответ может быть получен двумя я разберу каждый.
1)Тело в обоих случаях плавает. Если тело плавает в жидкости, то FА=mg, поэтому и в воде и в киросине FА будут одинаковыми. 2)Тело НЕ плавает, а тонет или всплывает. pв>pк, значит по формуле FА=pж*g*v можно сказать, что чем больше плотность жидкости, тем сила Архимеда больше. ответ:1)Одинаковы 2)Больше в воде
. В четвертой задаче нужно конкретное условие. Если под этот брусок вода НЕ заливается, то FА НЕ ДЕЙСТВУЕТ! Вода не выталкивает тело потому что она даже не заливается под него. Я решил эту задачу когда FA действует, ответ 1900Н. Если нужно будет решить обращайся