Тела одинаковой массы m=1 кг, вращающиеся вокруг вертикальной оси с одинаковой угловой скоростью. Радиус трубы R. Момент импульса первого тела 0,1Дж·с. Радиус трубы R=10см.
Угловая скорость тел (в рад/с) равна ...
Кинетическая энергия второго тела (в Дж) равна …
Дано:
m(N2) = 2 г = 2*10^(-3) кг
М(N2) = 28 г/моль = 28*10^(-3) кг/моль
Т = 280 К
R = 8,31 Дж/(моль*К)
Ек - ?
Формула средней кинетической энергии поступательного движения молекулы:
Ек(ср.) = (3/2)kT
Тогда чтобы найти суммарную кинетическую энергию надо умножить энергию одной молекулы на количество молекул:
Ек = Ек(ср.) * N
Найдём количество молекул N из соотношения массы газа m и массы одной молекулы m0:
m = m0*N
N = m/m0
Масса m0 неизвестна, тогда выразим и её - через соотношение молярной массы М и m0:
M = m0*Na, где Na - число Авогадро
m0 = M/Na
Подставляем выражение для m0 в уравнение для N:
N = m/m0 = m/(M/Na) = (m*Na)/M
Теперь подставим это уравнение в формулу для Ек, упростим, перемножив постоянную Авогадро и постоянную Больцмана, и найдём значение:
Ек = Ек(ср.) * N = (3/2)kT * (m*Na)/M = (3*(k*Na)*mT) / (2M)
k*Na = R - универсальная газовая постоянная
Ек = (3*R*mT) / (2M) = (3*8,31*2*10^(-3)*280) / (2*28*10^(-3)) = 3*8,31*10*10^(-3-(-3)) = 3*8,31*10 = 3*83,1 = 249,3 Дж
ответ: 249,3 Дж.
1) Дано:
V0=10 м\с
l=100 м
а-?
Решение
А= (V^2-V0^2)\2L, т.к v=0, то а= -v0( в квадрате)\2L
a=-10 в квадрате\2*100= -0.5(м\с)
3) смотри во вложениях, сначала составляем системы движений путь по течению, против течения и путь плота, который движется со скоростью реки. Решим первую и вторую систему методом сложения, найдем скорость течения, затем подставим во время, которое выразили из пути движения плота.
4) Дано:
t=2 c
l=5м
Т=5 с
а-?
Решение
Т.к движение равномерное, то l=2пи R, отсюда R=l\2пи=5\2* 3.14= 0.8
v=s\t, v=5\2=2/5 м\с,
Значит а=v в квадрате\R= 2/5 в квадрате\0.8= 7.8 м\с в квадрате