Тело, брошенное вертикально с некоторой высоты, находилось в полете в течение t = 3 с. при этом путь, пройденный им вверх, оказался в n = 4 раза меньше пути, пройденного вниз. чему равны начальная скорость и высота, с которой было брошено тело? сопротивлением воздуха пренебречь.
• по условию H - h = n, H = 4n. Тогда нетрудно получить, что h = 3n
• время полета складывается из достижения максимальной высоты H и спуска с нее:
○ t = t1 + t2
• учитывая, что конечная скорость при t1 равна нулю, нетрудно получить:
○ v0 = gt1
○ t1 = v0/g
• напишем уравнение координаты для дальнейшего перемещения тела:
○ 4n = (g t2²)/2
○ t2 = √((8n)/g)
• при этом высота n определяется выражением (рассматриваем движение тела во время t1)
○ n = v0²/(2g). тогда полное время движения равно:
○ t = (v0/g) + √((8n)/g) = (v0/g) + ((2v0)/g) = (3v0)/g. следовательно:
○ v0 = (g t)/3 = 10 м/c
○ n = 100/20 = 5 м
○ h = 3n = 15 м
○ H = 4n = 20 м