Яб сказал, что если 300 волн по 5 метров происходят в секунду(300гц - это собственно и есть 300 раз в с), то скорость звука в данной где-то полтора километра в секунду. если верить моему предыдущему постулату, то туда-обратно звук пробежал 0,75км, соответственно растояние 375м. если верить наблюдательности рыболова, а я склонен ему верить - он ведь свободное время посвящает подсчёту волн за 16 сек, а не решению при 3-п, то частота - 0,5 раз в с, длина волны - 0,4м, а скорость растространения волн - l/t, где т - период - величина, обратная частоте.. получается где-то (опять же, если верить рыбацким байкам - то у них рыба в лодку не влезла, то волны бились, как ужаленные)0,5*0,4=0,2м/с вот тут надо б пощитать сначала время падения камня, а как? тут глубина ущелья s=0,5gt^2=340*t и t+t=8 (где t- время равноускоренного падения камня, а t - время равномерного возврата звука)тут надо что-то из чего-то выразить так как малая t в квадрате, я лучше выражу большую t=8-t 5t^2=340(8-t) -> 5t^2+340t-2720=0 (поделим-ка это всё на 5) t^2+68t-544=0 ща мы его решим он-лайн. там 2 корня - один отрицательный(-70), второй 7,23. в чём смысл отрицательного корня - не пойму. типа, звук прилетал за 70 секунд до броска? , а вот положительный даёт нам глубину 8-7,23=0,77 и помножить на скорость звука - 0,77*340=261м для проверки можешь подставить эту глубину в уравнение перемещения свободного падения (там где а-тэ-квадрат пополам)
P = n k M V^2 / 3R => n = 3 R P / k M V^2 = 3*8,31*10^4 / 1,38*10^-23*2*10^-3*64*10^4=24,93*10^4 / 176,64*10^-22 = 0,141*10^26 мол-л/м^3
2. n = N / V; N = m / m0; m0 = M / Na
n = p Na / M = 0,13*6*10^23 / 32*10^-3 = 0,0243*10^26 мол-л/м^3
3. Ek=3/2 * k T; V^2= 3RT / M => T = M V^2 / 3R
Ek = 1,5 k M V^2 / 3R = 1,5*1,38*10^-23*32*10^-3*25*10^4 / 3*8,31 = 1656*10^-22 / 24,93 = 66,425*10^-22 Дж
4. P = 2/3 * Ek n = 2*5*10^-23*16*10^25 / 3 = 53,3*10^2 Па