Тело с массой
м
скользит по наклонной плоскости с самого начала
вверх по плоскости, а затем вниз по ней с ускорениями, равными одному
26
другой по модулю. угол наклона плоскости к горизонту составляет
альфа,
скольжение
коэффициент трения, когда тело движется вдоль плоскости,
u
, определить значение
внешняя дополнительная сила
f
воздействуя на тело, когда оно движется вверх вдоль
наклонная плоскость.
Сохраниться ли с течением времени равновесие если на одну чашку весов поставить тарелку с горячей водой.а на другую уравновешивающие ее гири
Не сохранится. Часть горячей воды довольно быстро испарится и вода потеряет в массе достаточно, что бы весы почувствовали разницу. Гиря перетянет.
Какое количество теплоты необходимо что бы расплавить 5 кг меди взятой при температуре 85 градусов.
Необходимо количество теплоты для нагрева до температуры плавления t₂ = 1085⁰, а затем до расплавления. Удельная теплота плавления меди λ = 2,1*10⁵ Дж/кг, а удельная теплоемкость меди
с = 385 Дж/кг*⁰С
Q = Q₁ + Q₂ = cm(t₂ - t₁) + λm = 385 *5*300 + 2,1-10⁵*5 = 570000 +1050000 = 1620000 Дж = 1,62 * 10⁶ Дж
Cразу поясню перед решением, чтобы не было казусов:
sqrt - корень квадратный
^ - степень
Дано:
V2 = 0 (т.к. 2 капля находится в состоянии покоя)
t0 - начальная температура капель.
C - удельная теплоемкость воды.
L - удельная теплота парообразования.
V1 - ?
Итак, приступим:
m2 <-V1m1
На основании закона сохранения импульса имеем:
mV1 = 2mV
V - скорость капель после столкновения.
V = mV1/2m
Сокращая массу, получаем:
V = V1/2
Теперь применим закон сохранения энергии. Однако перед этим поясню несколько моментов:
Формула Кол-ва теплоты:
Q = cmdT
Формула парообразования:
Qп = Lm
Закон сохранения энергии будет выглядеть так:
mV^2/2 = 2mV^2/2 + 2Q + 2Q
mV^2/2 = 2mV^2/2 + 2mC(t2-t1) + 2mL
t2 - неизвестный член.
Решаем полученное уравнение, подставляя данные и сокращая массу:
mV^2/2 - mV^2/2 = 2mC(t2-t1) + 2mL
V^2/2 - V^2 = 2C(t2-t1) + 2L
Теперь подставляем значение V:
V1^2/2 - V2^2/4 = 2C(t2-t1) + 2L; 2V1^2 - V1^2/4 = 2(C(t2-t1)+L)
V1^2/4 = 2(C(t2-t1)+L)
V1^2 = 8(C(t2-t1)+L)
V1 = sqrt(8(C(t2-t1)+L))
V1 = 2sqrt(2)*sqrt(C(t2-t1)+L)
ответ: V1 = 2sqrt(2)*sqrt(C(t2-t1)+L))