При попутном ветре, очевидно, относительно земли скорость голубя равна сумме скорости ветра υ и скорости голубя в отсутствие ветра υ1 , а расcтояние s между будет равно: s = ( υ1 + υ) t1. ( 1) при встречном ветре это же расстояние s птица преодолеет с относительной скоростью, равной разности скоростей голубя и ветра и, соответственно, s = ( υ1 - υ) t2. ( 2) в отсутствие ветра расстояние между голубь пролетит за время t = s/ υ1. ( 3 ) (конечно, (3) можно было записать в том же виде как и два предыдущих соотношения, т.е. s = υ1 t.) решена: мы имеем 3 уравнения с тремя неизвестными, остается только их решить. решать можно, что называется, в любом порядке. приравняв (1) и (2), т.е. исключив расстояние s , мы свяжем скорости υ и υ1: ( υ1 + υ) t1 = ( υ1 - υ) t2 . раскрываем скобки, вновь группируя, получаем: υ1 t1 + υ t1 - υ1 t2 + υ t2 = 0, или υ( t1 + t2 ) = υ1( t2 - t1 ). откуда υ = υ1(t2- t1)/ (t1+ t2). ( 4) далее можно подставить (4) в (2): s = ( υ1 - υ1(t2- t1)/ (t1+ t2)) t2 = υ12t1t2/ (t1+ t2). (5) осталось подставить (5) в (3) и выразить искомое t1: t = 2t1t2/(t1+ t2). отсюда окончательно: t1= t2t/(2t2- t). (6)вычисляем: t1= 75 мин ∙ 60 мин /(2∙75 мин - 60 мин) = 50 мин.ответ: 50 мин.
Объяснение:
J1=M*R^2/2 - момент инерции диска
J2= т*R^2 - момент инерции человека
J3= т0*R^2 - момент инерции мяча
п = 6 об/мин. = 6 об/60 сек. = 0,1 об/сек.
w0=2*pi*n
решение 1 - мяч летит попутно с вращающимся диском
J1*w0+J2*w0+m*v*R=J1*w+J2*w+J3*w - закон сохранения момента импульса
w = (J1*w0+J2*w0+m*v*R)/(J1+J2+J3)
w = (M*R^2/2*w0+т*R^2*w0+m*v*R)/(M*R^2/2+т*R^2+т0*R^2)
w = (M/2*w0+т*w0+m*v/R)/(M/2+т+т0)
w = ((M/2+т)*2*pi*n+m*v/R)/(M/2+т+т0)
w = ((200/2+75)*2*3,14*0,1+1*5/1)/(200/2+75+1)=0,652840909 ~ 0,65 рад/сек
решение 2 - мяч летит навстречу к вращающемуся диску
J1*w0+J2*w0-m*v*R=J1*w+J2*w+J3*w
w = (J1*w0+J2*w0-m*v*R)/(J1+J2+J3)
w = (M*R^2/2*w0+т*R^2*w0-m*v*R)/(M*R^2/2+т*R^2+т0*R^2)
w = (M/2*w0+т*w0-m*v/R)/(M/2+т+т0)
w = ((M/2+т)*2*pi*n-m*v/R)/(M/2+т+т0)
w = ((200/2+75)*2*3,14*0,1-1*5/1)/(200/2+75+1)=0,596022727
~ 0,60 рад/сек