Точка рухається по колу так, що залежність шляху від часу задається рівнянням: S = A + Bt +Ct2, де В = *2 м/с і С = 1 м/с2. Знайти лінійну швидкість точки, її тангенціальне, нормальне і повне прискорення через 3 с після початку руху, якщо відомо, що нормальне прискорення в момент часу 2 с становить 0,5 м/с2. Відповіді мають бути (4 м/с; 2 м/с2; 2 м/с2; 2,83 м/с2)
пусть h - максимальная высота подъема при стрельбе вертикально
1) из кинематики имеем: Sy = H = (V(y)^2 - V0(y)^2) / -2g
ясно, что при максимальной высоте подъема конечная скорость V равна нулю:
H = V0(y)^2 / 2g = V0^2 sin^2 α / 2g
2) пренебрегая сопротивлением воздуха, запишем закон сохранения энергии (можно и аналогично первому действию вывести формулу, но так веселее):
m V0^2 / 2 = m g h,
h = V0^2 / 2g
3) видно, что h > H. чтобы узнать, во сколько раз h больше H, разделим первую величину на вторую:
h / H = (V0^2 / 2g) * (2g / V0^2 sin^2 α) = 1 / sin^2 α = 4 / 2 = 2.
Найти: Есв
Решение.
Есв=Δm*c²,
∆m = Zmp + ( А- Z) mn - Мя, из символической записи изотопа лития 6 3 Li , видим, что А = 6 и Z =3, т.е в ядре изотопа лития 6 нуклонов, из них 3 протона и 3 нейтрона (N =А – Z).
Есв ={ Zmp + ( А- Z) mn - Мя} *с² =[3∙1,6724∙10-27 +(6-3) ∙ 1,6748 ∙10-27 - 9,9885 •10-27кг ] ∙ (3∙10⁸ )2 = 4,761 * 10⁻¹²Дж