Трактор перевез груз по горизонтальному пути из пункта А в пункт В, прилагая постоянное усилие. Время прохождения человеком через эти пункты указано на рисунке.
1. Какие силы препятствуют движению тележки?
2. Определите работу, совершенную трактором при перемещении груза.
3. Какова мощность, развиваемая трактром, если скорость его движения была постоянной?
Рулетка и расстояние между пунктами А и В изображены в одном масштабе. Сопротивлением воздуха следует пренебречь.
Уменьшится в 2 раза.
Объяснение:
Дано:
L₀
L₁ = 1·L₀ / 4
T₁ / T₀ - ?
Запишем закон Гука в двух формаx:
F = k·| ΔL | и
σ = E·ε = E·ΔL/L₀
Но:
σ = F / S ;
E·ΔL/L₀ = k·ΔL/S
k = E·S / L₀ - здесь E - модуль Юнга резины, S - площадь сечения жгута, L₀ - первоначальная длина жгута.
Для данного жгута E и S - постоянные величины, таким образом делаем важный вывод:
Жесткость жгута обратно пропорциональна его длине.
Период колебаний:
T = 2π·√ (m / k)
Отношение периодов:
T₁ / T₀= (2π·√ (m / k₁)) / (2π·√ (m / k₀)) = √ (k₀ / k₁ ) =
= √(L₁/L₀) = √ (L₀ / (4L₀)) = √ (1/4) = 1/2
Вывод: Период колебаний уменьшился в 2 раза.
Объяснение:
Мы знаем что
k = ( ES )/L
Согласно условию в данной задаче мы имеем дело с жгутом
Тогда
k - коэффициент жесткости жгута
Е - модуль упругости жгута
S - площадь поперечного сечения жгута
L - длина жгута
Также мы знаем что
Т = 2π√( m/k )
Где Т - период период колебания тела на жгуте
m - масса колеблющегося тела
Пусть T1 - периуд колебания груза ( на жгуте ) когда длина жгута равна L
T2 - периуд колебания груза ( на жгуте ) когда длина жгута равна L/4
( L - L3/4 = L/4 )
Тогда
T2/T1 = ( 2π√( m/k2 ) )/( 2π√( m/k1 ) )
Т.к. m = const
T2/T1 = √( ( 1/k2 )/( 1/k1 ) )
T2/T1 = √( k1/k2 )
Из вышесказанного следует что
T2/T1 = √( ( ( ЕS )/L )/( ( ЕS )/( L/4 ) ) )
При Е ; S = const
T2/T1 = √( ( 1/L )/( 1/( 0,25L ) ) )
T2/T1 = √( 0,25L/L )
T2/T1 = √( 0,25L/L )
T2/T1 = √0,25
T2/T1 = 1/2
Т1/Т2 = 2
То есть при уменьшении длины жгута на 75% его период колебаний уменьшится в 2 раза