Три одинаковых металлических шарика зарядили разноимёнными зарядами, которые равны −74q, 67q и Xq (X — неизвестное число). После этого шарики привели в соприкосновение, а потом развели в разные стороны. После выполнения всех указанных действий заряд третьего шарика равен 17q. Чему равны заряды первого и второго шарика после выполнения всех указанных действий? Чему был равен заряд третьего шарика в начале эксперимента?
При записи ответа (если получается отрицательное число) не забудь поставить перед ним знак «-» без пробела! Если ответ является положительным числом, то никакой знак ставить не нужно!
сила тяжести груза mg=60нmg=60н значительно больше силы, с которой надо тянуть веревку, чтобы удержать груз. это определяется существенными силами трения веревки о бревно. сначала силы трения препятствуют соскальзыванию груза под действием силы тяжести. полный расчет распределения сил трения, действующих на веревку, довольно сложен, поскольку сила натяжения веревки в местах ее соприкосновения с бревном меняется от f1f1 до mgmg. в свою очередь сила давления веревки на бревно также меняется, будучи пропорциональной в каждой точке соответствующей локальной силе натяжения веревки. соответственно и силы трения, действующие на веревку, определяются именно указанными силами давления. однако для решения достаточно заметить, что полная сила трения fтрfтр (слагающие которой пропорциональны в каждой точке силе реакции бревна) будет с соответствующими коэффициентами пропорциональна силам натяжения веревки на концах; в частности, с некоторым коэффициентом kk она будет равна большей силе натяжения: fтр=kmgfтр=kmg. это означает, что отношение большей силы натяжения к меньшей есть величина постоянная для данного расположения веревки и бревна: mg/t1=1/(1−k)mg/t1=1/(1−k), поскольку t1=mg−kmgt1=mg−kmg. когда мы хотим поднять груз, концы веревки как бы меняются местами. сила трения теперь направлена против силы t2t2 и уже не , а мешает. отношение большей силы натяжения, равной теперь t2t2, к меньшей - mgmg будет, очевидно, таким же, как и в первом случае: t2/mg=1/(1−k)=mg/t1t2/mg=1/(1−k)=mg/t1. отсюда находим, что t2=(mg)2/t1=90н источник:
сила тяжести груза mg=60нmg=60н значительно больше силы, с которой надо тянуть веревку, чтобы удержать груз. это определяется существенными силами трения веревки о бревно. сначала силы трения препятствуют соскальзыванию груза под действием силы тяжести. полный расчет распределения сил трения, действующих на веревку, довольно сложен, поскольку сила натяжения веревки в местах ее соприкосновения с бревном меняется от f1f1 до mgmg. в свою очередь сила давления веревки на бревно также меняется, будучи пропорциональной в каждой точке соответствующей локальной силе натяжения веревки. соответственно и силы трения, действующие на веревку, определяются именно указанными силами давления. однако для решения достаточно заметить, что полная сила трения fтрfтр (слагающие которой пропорциональны в каждой точке силе реакции бревна) будет с соответствующими коэффициентами пропорциональна силам натяжения веревки на концах; в частности, с некоторым коэффициентом kk она будет равна большей силе натяжения: fтр=kmgfтр=kmg. это означает, что отношение большей силы натяжения к меньшей есть величина постоянная для данного расположения веревки и бревна: mg/t1=1/(1−k)mg/t1=1/(1−k), поскольку t1=mg−kmgt1=mg−kmg. когда мы хотим поднять груз, концы веревки как бы меняются местами. сила трения теперь направлена против силы t2t2 и уже не , а мешает. отношение большей силы натяжения, равной теперь t2t2, к меньшей - mgmg будет, очевидно, таким же, как и в первом случае: t2/mg=1/(1−k)=mg/t1t2/mg=1/(1−k)=mg/t1. отсюда находим, что t2=(mg)2/t1=90н источник: